Chastel Adrien, Worm Dennis J, Alves Isabel D, Vimont Delphine, Petrel Melina, Fernandez Samantha, Garrigue Philippe, Fernandez Philippe, Hindié Elif, Beck-Sickinger Annette G, Morgat Clément
Department of Nuclear Medicine, University Hospital of Bordeaux, F-33076, Bordeaux, France.
University of Bordeaux, INCIA UMR 5287, F-33400, Talence, France.
EJNMMI Res. 2020 Mar 2;10(1):16. doi: 10.1186/s13550-020-0612-8.
Targeting G protein-coupled receptors on the surface of cancer cells with peptide ligands is a promising concept for the selective tumor delivery of therapeutically active cargos, including radiometals for targeted radionuclide therapy (TRT). Recently, the radiolanthanide terbium-161 (Tb) gained significant interest for TRT application, since it decays with medium-energy β-radiation but also emits a significant amount of conversion and Auger electrons with short tissue penetration range. The therapeutic efficiency of radiometals emitting Auger electrons, like Tb, can therefore be highly boosted by an additional subcellular delivery into the nucleus, in order to facilitate maximum dose deposition to the DNA. In this study, we describe the design of a multifunctional, radiolabeled neuropeptide-Y (NPY) conjugate, to address radiolanthanides to the nucleus of cells naturally overexpressing the human Y receptor (hYR). By using solid-phase peptide synthesis, the hYR-preferring [F,P]-NPY was modified with a fatty acid, a cathepsin B-cleavable linker, followed by a nuclear localization sequence (NLS), and a DOTA chelator (compound pb12). In this proof-of-concept study, labeling was performed with either native terbium-159 (Tb), as surrogate for Tb, or with indium-111 (In).
[Tb]Tb-pb12 showed a preserved high binding affinity to endogenous hYR on MCF-7 cells and was able to induce receptor activation and internalization similar to the hYR-preferring [F,P]-NPY. Specific internalization of the In-labeled conjugate into MCF-7 cells was observed, and importantly, time-dependent nuclear uptake of In was demonstrated. Study of metabolic stability showed that the peptide is insufficiently stable in human plasma. This was confirmed by injection of [In]In-pb12 in nude mice bearing MCF-7 xenograft which showed specific uptake only at very early time point.
The multifunctional NPY conjugate with a releasable DOTA-NLS unit represents a promising concept for enhanced TRT with Auger electron-emitting radiolanthanides. Our research is now focusing on improving the reported concept with respect to the poor plasmatic stability of this promising radiopeptide.
利用肽配体靶向癌细胞表面的G蛋白偶联受体是一种很有前景的概念,可用于将包括用于靶向放射性核素治疗(TRT)的放射性金属在内的治疗活性物质选择性递送至肿瘤。最近,放射性镧系元素铽-161(Tb)在TRT应用中引起了极大关注,因为它通过中能β辐射衰变,但也会发射大量具有短组织穿透范围的转换电子和俄歇电子。因此,像Tb这样发射俄歇电子的放射性金属的治疗效率可以通过额外的亚细胞水平递送至细胞核而得到极大提高,以便促进对DNA的最大剂量沉积。在本研究中,我们描述了一种多功能、放射性标记的神经肽Y(NPY)偶联物的设计,用于将放射性镧系元素靶向到天然过表达人Y受体(hYR)的细胞的细胞核。通过固相肽合成,对优先结合hYR的[F,P]-NPY进行修饰,添加脂肪酸、组织蛋白酶B可裂解的连接子,随后是核定位序列(NLS)和DOTA螯合剂(化合物pb12)。在这项概念验证研究中,标记使用天然铽-159(Tb)作为Tb的替代物,或使用铟-111(In)。
[Tb]Tb-pb12对MCF-7细胞上的内源性hYR显示出保留的高结合亲和力,并且能够诱导受体激活和内化,类似于优先结合hYR的[F,P]-NPY。观察到In标记的偶联物特异性内化到MCF-7细胞中,重要的是,证明了In的时间依赖性核摄取。代谢稳定性研究表明该肽在人血浆中稳定性不足。在携带MCF-7异种移植瘤的裸鼠中注射[In]In-pb12证实了这一点,其仅在非常早期的时间点显示出特异性摄取。
具有可释放DOTA-NLS单元的多功能NPY偶联物是利用发射俄歇电子的放射性镧系元素增强TRT的一个有前景的概念。我们目前的研究重点是针对这种有前景的放射性肽血浆稳定性差的问题改进所报道的概念。