College of Software, Nankai University, Tianjin, People's Republic of China.
School of Computer Science and Technology, Beijing Institute of Technology, Beijing, People's Republic of China.
Med Biol Eng Comput. 2020 May;58(5):1015-1029. doi: 10.1007/s11517-020-02146-4. Epub 2020 Mar 2.
The common CT imaging signs of lung diseases (CISLs) which frequently appear in lung CT images are widely used in the diagnosis of lung diseases. Computer-aided diagnosis (CAD) based on the CISLs can improve radiologists' performance in the diagnosis of lung diseases. Since similarity measure is important for CAD, we propose a multi-level method to measure the similarity between the CISLs. The CISLs are characterized in the low-level visual scale, mid-level attribute scale, and high-level semantic scale, for a rich representation. The similarity at multiple levels is calculated and combined in a weighted sum form as the final similarity. The proposed multi-level similarity method is capable of computing the level-specific similarity and optimal cross-level complementary similarity. The effectiveness of the proposed similarity measure method is evaluated on a dataset of 511 lung CT images from clinical patients for CISLs retrieval. It can achieve about 80% precision and take only 3.6 ms for the retrieval process. The extensive comparative evaluations on the same datasets are conducted to validate the advantages on retrieval performance of our multi-level similarity measure over the single-level measure and the two-level similarity methods. The proposed method can have wide applications in radiology and decision support. Graphical abstract.
肺部疾病的常见 CT 成像征象(CISLs)广泛应用于肺部 CT 图像的诊断中,这些征象在肺部 CT 图像中经常出现。基于 CISLs 的计算机辅助诊断(CAD)可以提高放射科医生诊断肺部疾病的能力。由于相似性度量对于 CAD 很重要,因此我们提出了一种多尺度方法来度量 CISLs 之间的相似性。CISLs 在低水平视觉尺度、中水平属性尺度和高水平语义尺度上进行特征化,以实现丰富的表示。在加权和形式下计算和组合多个层次的相似性作为最终的相似性。所提出的多层次相似性方法能够计算特定层次的相似性和最佳跨层次互补相似性。在来自临床患者的 511 张肺部 CT 图像的数据集上,对所提出的相似性度量方法的有效性进行了评估,用于 CISLs 检索。它可以实现约 80%的精度,检索过程仅需 3.6 毫秒。在相同的数据集上进行了广泛的比较评估,以验证我们的多层次相似性度量方法在检索性能方面相对于单层次度量和两层次相似性方法的优势。该方法在放射学和决策支持方面具有广泛的应用。