Suppr超能文献

基于内容的图像检索系统对弥漫性实质性肺疾病患者胸部 CT 解读的影响。

Impact of a content-based image retrieval system on the interpretation of chest CTs of patients with diffuse parenchymal lung disease.

机构信息

Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.

contextflow GmbH, Vienna, Austria.

出版信息

Eur Radiol. 2023 Jan;33(1):360-367. doi: 10.1007/s00330-022-08973-3. Epub 2022 Jul 2.

Abstract

OBJECTIVES

Content-based image retrieval systems (CBIRS) are a new and potentially impactful tool for radiological reporting, but their clinical evaluation is largely missing. This study aimed at assessing the effect of CBIRS on the interpretation of chest CT scans from patients with suspected diffuse parenchymal lung disease (DPLD).

MATERIALS AND METHODS

A total of 108 retrospectively included chest CT scans with 22 unique, clinically and/or histopathologically verified diagnoses were read by eight radiologists (four residents, four attending, median years reading chest CT scans 2.1± 0.7 and 12 ± 1.8, respectively). The radiologists read and provided the suspected diagnosis at a certified radiological workstation to simulate clinical routine. Half of the readings were done without CBIRS and half with the additional support of the CBIRS. The CBIRS retrieved the most likely of 19 lung-specific patterns from a large database of 6542 thin-section CT scans and provided relevant information (e.g., a list of potential differential diagnoses).

RESULTS

Reading time decreased by 31.3% (p < 0.001) despite the radiologists searching for additional information more frequently when the CBIRS was available (154 [72%] vs. 95 [43%], p < 0.001). There was a trend towards higher overall diagnostic accuracy (42.2% vs 34.7%, p = 0.083) when the CBIRS was available.

CONCLUSION

The use of the CBIRS had a beneficial impact on the reading time of chest CT scans in cases with DPLD. In addition, both resident and attending radiologists were more likely to consult informational resources if they had access to the CBIRS. Further studies are needed to confirm the observed trend towards increased diagnostic accuracy with the use of a CBIRS in practice.

KEY POINTS

• A content-based image retrieval system for supporting the diagnostic process of reading chest CT scans can decrease reading time by 31.3% (p < 0.001). • The decrease in reading time was present despite frequent usage of the content-based image retrieval system. • Additionally, a trend towards higher diagnostic accuracy was observed when using the content-based image retrieval system (42.2% vs 34.7%, p = 0.083).

摘要

目的

基于内容的图像检索系统(CBIRS)是放射学报告的一种新的、具有潜在影响力的工具,但对其临床评估还很缺乏。本研究旨在评估 CBIRS 对疑似弥漫性实质性肺疾病(DPLD)患者胸部 CT 扫描的解读效果。

材料和方法

共纳入 108 例回顾性胸部 CT 扫描,22 例具有 22 种独特的临床和/或组织病理学诊断,由 8 名放射科医生(4 名住院医生,4 名主治医生,分别阅读胸部 CT 扫描的中位数年限为 2.1±0.7 年和 12±1.8 年)阅读并提供疑似诊断,在认证的放射工作站上模拟临床常规。一半的阅读是在没有 CBIRS 的情况下进行的,另一半则是在 CBIRS 的额外支持下进行的。CBIRS 从 6542 例薄层 CT 扫描的大型数据库中检索出 19 种最可能的肺部特异性模式,并提供相关信息(例如,潜在鉴别诊断列表)。

结果

尽管当 CBIRS 可用时,放射科医生更频繁地搜索额外信息(154[72%]比 95[43%],p<0.001),但阅读时间减少了 31.3%(p<0.001)。当 CBIRS 可用时,整体诊断准确性呈上升趋势(42.2%比 34.7%,p=0.083)。

结论

在 DPLD 病例中,使用 CBIRS 对胸部 CT 扫描的阅读时间有有益的影响。此外,如果放射科医生可以使用 CBIRS,住院医生和主治医生更有可能查阅信息资源。还需要进一步的研究来证实使用 CBIRS 实践中观察到的诊断准确性提高的趋势。

关键点

  1. 支持阅读胸部 CT 扫描的诊断过程的基于内容的图像检索系统可以将阅读时间减少 31.3%(p<0.001)。

  2. 尽管频繁使用基于内容的图像检索系统,但阅读时间仍有所减少。

  3. 当使用基于内容的图像检索系统时,观察到诊断准确性呈上升趋势(42.2%比 34.7%,p=0.083)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ceb1/9755072/f6d0dd66a05a/330_2022_8973_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验