Suppr超能文献

通过结构MRI全脑放射组学识别帕金森病患者的抑郁亚型:一项无监督机器学习研究

Identification of Depression Subtypes in Parkinson's Disease Patients via Structural MRI Whole-Brain Radiomics: An Unsupervised Machine Learning Study.

作者信息

Zhang Zihan, Peng Jiaxuan, Song Qiaowei, Xu Yuyun, Wei Yuguo, Shu Zhenyu

机构信息

Jinzhou Medical University Postgraduate Education Base (Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China.

Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.

出版信息

CNS Neurosci Ther. 2025 Feb;31(2):e70182. doi: 10.1111/cns.70182.

Abstract

OBJECTIVE

Current clinical evaluation may tend to lack precision in detecting depression in Parkinson's disease (DPD). Radiomics features have gradually shown potential as auxiliary diagnostic tools in identifying and distinguishing different subtypes of Parkinson's disease (PD), and a radiomic approach that combines unsupervised machine learning has the potential to identify DPD.

METHODS

Analyze the clinical and imaging data of 272 Parkinson's disease (PD) patients from the PPMI dataset, along with 45 PD patients from the NACC dataset. Extract radiomic features from T1-weighted MRI images and employ principal component analysis (PCA) for dimensionality reduction. Subsequently, apply four unsupervised clustering methods including Gaussian mixture model (GMM), hierarchical clustering, K-means, and partitioning around medoids (PAM) to classify cases in the PPMI dataset into distinct subtypes. Identify high-risk subtypes of DPD on the basis of the time and number of depression progression, and validate these findings using the NACC dataset. The data from the high-risk subtype were divided into a training subtype and a testing subtype in a 7:3 ratio. Multiple logistic regression analysis was conducted on the training subtype data to develop a traditional logistic regression model for the high-risk subtype, which was subsequently compared with a supervised logistic regression model constructed for the entire PPMI cohort. Finally, the performance of both models was evaluated using receiver operating characteristic (ROC) curves. In addition, a decision tree (DT) model was constructed based on independent risk factors of high-risk subtypes and validated using low-risk subtype data. ROC curves were employed to validate this model across training subtype, testing subtype, and low-risk subtype datasets.

RESULTS

The PAM clustering method demonstrates superior performance compared to the other three clustering methods when the number of clusters is 2. High-risk subtypes of DPD can be effectively distinguished in both the PPMI and NACC datasets. A traditional logistic regression model was developed based on rapid-eye-movement behavior disorder, UPDRS I score, UPDRS II score, and ptau in high-risk subgroups. This model exhibits a diagnostic efficacy (AUC = 0.731) that surpasses that of the traditional regression model constructed using the entire PPMI cohort (AUC = 0.674). The prediction model based on high-risk subtypes had AUC values of 0.853 and 0.81 in the training and testing subtypes, sensitivities of 0.765 and 0.786, and specificities of 0.771 and 0.815, respectively. The AUC, sensitivity, and specificity in the nonhigh-risk subtype were 0.859, 0.654, and 0.852, respectively.

CONCLUSION

By identifying MRI structural radiomics and clinical features as potential biomarkers, the radiomic approach and UCA provide new insights into the pathophysiology of DPD to support the clinical diagnosis with high prediction accuracy.

摘要

目的

目前的临床评估在检测帕金森病伴发抑郁(DPD)时可能缺乏精准性。影像组学特征已逐渐显示出作为辅助诊断工具来识别和区分帕金森病(PD)不同亚型的潜力,且一种结合无监督机器学习的影像组学方法有识别DPD的潜力。

方法

分析来自PPMI数据集的272例帕金森病(PD)患者以及来自NACC数据集的45例PD患者的临床和影像数据。从T1加权MRI图像中提取影像组学特征,并采用主成分分析(PCA)进行降维。随后,应用包括高斯混合模型(GMM)、层次聚类、K均值和围绕中心点的划分(PAM)在内的四种无监督聚类方法,将PPMI数据集中的病例分类为不同亚型。根据抑郁进展的时间和次数识别DPD的高危亚型,并使用NACC数据集验证这些发现。将高危亚型的数据按7:3的比例分为训练亚型和测试亚型。对训练亚型数据进行多因素逻辑回归分析,以建立高危亚型的传统逻辑回归模型,随后将其与为整个PPMI队列构建的监督逻辑回归模型进行比较。最后,使用受试者工作特征(ROC)曲线评估两个模型的性能。此外,基于高危亚型的独立危险因素构建决策树(DT)模型,并使用低危亚型数据进行验证。使用ROC曲线在训练亚型、测试亚型和低危亚型数据集中验证该模型。

结果

当聚类数为2时,PAM聚类方法相较于其他三种聚类方法表现出更优的性能。在PPMI和NACC数据集中均能有效区分DPD的高危亚型。基于高危亚组中的快速眼动行为障碍、统一帕金森病评定量表I评分、统一帕金森病评定量表II评分和磷酸化tau蛋白,建立了传统逻辑回归模型。该模型的诊断效能(AUC = 0.731)超过了使用整个PPMI队列构建的传统回归模型(AUC = 0.674)。基于高危亚型的预测模型在训练亚型和测试亚型中的AUC值分别为0.853和0.81,敏感度分别为0.765和0.786,特异度分别为0.771和0.815。非高危亚型中的AUC、敏感度和特异度分别为0.859、0.654和0.852。

结论

通过将MRI结构影像组学和临床特征识别为潜在生物标志物,影像组学方法和无监督聚类分析为DPD的病理生理学提供了新见解,以支持具有高预测准确性的临床诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cda/11802460/6a604b5393b1/CNS-31-e70182-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验