Suppr超能文献

基于决策树的模型用于识别成人脊柱畸形手术后失血和输血需求的预测因素

Decision Tree-based Modelling for Identification of Predictors of Blood Loss and Transfusion Requirement After Adult Spinal Deformity Surgery.

作者信息

Raman Tina, Vasquez-Montes Dennis, Varlotta Chris, Passias Peter G, Errico Thomas J

机构信息

Department of Orthopaedic Surgery, NYU Langone Orthopedic Hospital, New York, New York.

出版信息

Int J Spine Surg. 2020 Feb 29;14(1):87-95. doi: 10.14444/7012. eCollection 2020 Feb.

Abstract

BACKGROUND

Multilevel fusions and complex osteotomies to restore global alignment in adult spinal deformity (ASD) surgery can lead to increased operative time and blood loss. In this regard, we assessed factors predictive of perioperative blood product transfusion in patients undergoing long posterior spinal fusion for ASD.

METHODS

A single-institution retrospective review was conducted on 909 patients with ASD, age > 18 years, who underwent surgery for ASD with greater than 4 levels fused. Using conditional inference tree analysis, a machine learning methodology, we sought to predict the combination of variables that best predicted increased risk for intraoperative percent blood volume lost and perioperative blood product transfusion.

RESULTS

Among the 909 patients included in the study, 377 (41.5%) received red blood cell (RBC) transfusion. The conditional inference tree analysis identified greater than 13 levels fused, American Society of Anesthesiologists (ASA) score > 1, a history of hypertension, 3-column osteotomy, pelvic fixation, and operative time > 8 hours, as significant risk factors for perioperative RBC transfusion. The best predictors for the subgroup with the highest risk for intraoperative percent blood volume lost (subgroup mean: 53.1% ± 42.9%) were greater than 13 levels fused, ASA score > 1, preoperative hemoglobin < 13.6 g/dL, 3-column osteotomy, posterior column osteotomy, and pelvic fixation. Patients who underwent major blood transfusion intraoperatively had significantly longer length of stay (8.5 days) versus those who did not (6.1 days) ( < .0001). The overall 90-day complication rate in patients who underwent major blood transfusion intraoperatively was 49%, compared with 19% in those who did not ( < .0001). By multivariate regression analysis, patients with a preoperative hemoglobin > 13.0 were less likely to require major blood transfusion (odds ratio: 0.52,  = .046).

CONCLUSIONS

Using a supervised learning technique, this study demonstrates that greater than 13 levels fused, ASA score > 1, 3-column osteotomy, and pelvic fixation are consistent risk factors for increased intraoperative percent blood volume lost and perioperative RBC transfusion. The addition of having a preoperative hemoglobin < 13.6 g/dL or undergoing a posterior column osteotomy conferred the highest risk for intraoperative blood loss. This information can assist spinal deformity surgeons in identifying at-risk individuals and allocating healthcare resources.

LEVEL OF EVIDENCE

摘要

背景

在成人脊柱畸形(ASD)手术中,为恢复整体对线而进行的多级融合和复杂截骨术可导致手术时间延长和失血增加。在这方面,我们评估了接受ASD后路长节段脊柱融合术患者围手术期输血的预测因素。

方法

对909例年龄>18岁、接受ASD手术且融合节段超过4个节段的患者进行单机构回顾性研究。使用条件推断树分析(一种机器学习方法),我们试图预测最能预测术中失血量百分比增加和围手术期输血风险增加的变量组合。

结果

在纳入研究的909例患者中,377例(41.5%)接受了红细胞(RBC)输血。条件推断树分析确定融合节段超过13个、美国麻醉医师协会(ASA)评分>1、有高血压病史、三柱截骨术、骨盆固定以及手术时间>8小时是围手术期RBC输血风险增加的显著因素。术中失血量百分比最高的亚组(亚组均值:53.1%±42.9%)的最佳预测因素是融合节段超过13个、ASA评分>1、术前血红蛋白<13.6 g/dL、三柱截骨术、后柱截骨术和骨盆固定。术中接受大量输血的患者住院时间明显长于未接受大量输血的患者(8.5天对6.1天)(P<0.0001)。术中接受大量输血的患者90天总体并发症发生率为49%,而未接受大量输血的患者为19%(P<0.0001)。多因素回归分析显示,术前血红蛋白>13.0的患者需要大量输血的可能性较小(比值比:0.52,P=0.046)。

结论

本研究使用监督学习技术表明,融合节段超过13个、ASA评分>1、三柱截骨术和骨盆固定是术中失血量百分比增加和围手术期RBC输血风险增加的一致危险因素。术前血红蛋白<13.6 g/dL或接受后柱截骨术会使术中失血风险最高。这些信息可帮助脊柱畸形外科医生识别高危个体并分配医疗资源。

证据水平

3级。

相似文献

引用本文的文献

6
Machine learning in transfusion medicine: A scoping review.输血医学中的机器学习:一项范围综述。
Transfusion. 2024 Jan;64(1):162-184. doi: 10.1111/trf.17582. Epub 2023 Nov 10.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验