Suppr超能文献

手术中输血预测的机器学习模型应用现状图谱分析:综述研究。

Mapping the landscape of machine learning models used for predicting transfusions in surgical procedures: a scoping review.

机构信息

Anesthesiology Department, Hôpital Erasme, Route de Lennik 808, Anderlecht, Bruxelles, 1070, Belgium.

Faculté de médecine, Université Libre de Bruxelles, Brussels, Belgium.

出版信息

BMC Med Inform Decis Mak. 2024 Oct 25;24(1):312. doi: 10.1186/s12911-024-02729-3.

Abstract

Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to predict transfusion. This scoping review investigates the development and current state of machine learning models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field's progress and potential directions.The review was conducted using the databases Cochrane, Embase, and PubMed. The search included keywords related to blood transfusion, statistical models, and surgical procedures. Peer-reviewed articles were included, while literature reviews, case reports, and non-human studies were excluded.A total of 40 studies met the inclusion criteria. The most frequently studied biological variables included haemoglobin, platelet count, international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, creatinine, white blood cells, and albumin. Clinical variables of importance included age, sex, surgery type, blood pressure, weight, surgery duration, american society of anesthesiology (ASA) status, blood loss, and body mass index (BMI). The software employed varied, with Python, R, SPSS, and SAS being the most commonly used. Logistic regression was the predominant methodology used in 20 studies.Our scoping review highlights the need for improved reporting and transparency in methodology, variables, and software used. Future research should focus on providing detailed descriptions and open access to codes of respective models, promoting reproducibility, and enhancing the clinical relevance of transfusion risk prediction models.

摘要

大量输血会给输血需求和血液制品用量的确定带来挑战。本综述探讨了机器学习(ML)模型在手术过程中预测输血风险的应用,重点介绍了预测输血风险的方法学、变量和所使用的软件。这项范围综述旨在调查用于预测手术过程中输血风险的机器学习模型的开发和现状,为医生提供该领域的进展和潜在方向的信息。

该综述使用了 Cochrane、Embase 和 PubMed 数据库进行。搜索包括与输血、统计模型和手术程序相关的关键词。纳入了同行评议的文章,而排除了文献综述、病例报告和非人类研究。

共有 40 项研究符合纳入标准。最常研究的生物学变量包括血红蛋白、血小板计数、国际标准化比值(INR)、活化部分凝血活酶时间(aPTT)、纤维蛋白原、肌酐、白细胞和白蛋白。重要的临床变量包括年龄、性别、手术类型、血压、体重、手术持续时间、美国麻醉师协会(ASA)状态、失血量和体重指数(BMI)。所使用的软件各不相同,Python、R、SPSS 和 SAS 是最常用的软件。20 项研究中采用了逻辑回归作为主要方法。

我们的范围综述强调了在方法学、变量和所使用的软件方面需要改进报告和透明度。未来的研究应侧重于详细描述和开放获取各自模型的代码,以促进可重复性,并增强输血风险预测模型的临床相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de13/11515354/28487610cbd2/12911_2024_2729_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验