Suppr超能文献

用于机械声学心肺信号纵向监测的精密可穿戴加速度计接触式麦克风。

Precision wearable accelerometer contact microphones for longitudinal monitoring of mechano-acoustic cardiopulmonary signals.

作者信息

Gupta Pranav, Moghimi Mohammad J, Jeong Yaesuk, Gupta Divya, Inan Omer T, Ayazi Farrokh

机构信息

1Georgia Institute of Technology, Atlanta, GA 30308 USA.

2Department of Medicine, Emory University, Atlanta, GA 30308 USA.

出版信息

NPJ Digit Med. 2020 Feb 12;3:19. doi: 10.1038/s41746-020-0225-7. eCollection 2020.

Abstract

Mechano-acoustic signals emanating from the heart and lungs contain valuable information about the cardiopulmonary system. Unobtrusive wearable sensors capable of monitoring these signals longitudinally can detect early pathological signatures and titrate care accordingly. Here, we present a wearable, hermetically-sealed high-precision vibration sensor that combines the characteristics of an accelerometer and a contact microphone to acquire wideband mechano-acoustic physiological signals, and enable simultaneous monitoring of multiple health factors associated with the cardiopulmonary system including heart and respiratory rate, heart sounds, lung sounds, and body motion and position of an individual. The encapsulated accelerometer contact microphone (ACM) utilizes nano-gap transducers to achieve extraordinary sensitivity in a wide bandwidth (DC-12 kHz) with high dynamic range. The sensors were used to obtain health factors of six control subjects with varying body mass index, and their feasibility in detection of weak mechano-acoustic signals such as pathological heart sounds and shallow breathing patterns is evaluated on patients with preexisting conditions.

摘要

发自心脏和肺部的机械声学信号包含有关心肺系统的宝贵信息。能够纵向监测这些信号的无创可穿戴传感器可以检测早期病理特征并据此调整护理方案。在此,我们展示了一种可穿戴的、气密密封的高精度振动传感器,它结合了加速度计和接触式麦克风的特性,以获取宽带机械声学生理信号,并能够同时监测与心肺系统相关的多个健康因素,包括心率、呼吸频率、心音、肺音以及个体的身体运动和位置。封装式加速度计接触麦克风(ACM)利用纳米间隙换能器在宽带宽(直流-12kHz)内实现具有高动态范围的非凡灵敏度。这些传感器用于获取六名体重指数不同的对照受试者的健康因素,并在患有现有疾病的患者身上评估其检测微弱机械声学信号(如病理性心音和浅呼吸模式)的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/579d/7015926/a64dae4ea8e4/41746_2020_225_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验