Suppr超能文献

基于表面流形上的图卷积神经网络的基于内在补丁的皮质解剖分割

Intrinsic Patch-Based Cortical Anatomical Parcellation Using Graph Convolutional Neural Network on Surface Manifold.

作者信息

Wu Zhengwang, Zhao Fenqiang, Xia Jing, Wang Li, Lin Weili, Gilmore John H, Li Gang, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, USA.

出版信息

Med Image Comput Comput Assist Interv. 2019 Oct;11766:492-500. doi: 10.1007/978-3-030-32248-9_55. Epub 2019 Oct 10.

Abstract

Automatic parcellation of cortical surfaces into anatomically meaningful regions of interest (ROIs) is of great importance in brain analysis. Due to the complex shape of the convoluted cerebral cortex, conventional methods generally require three steps to obtain the parcellations. , the original cortical surface is iteratively inflated and mapped onto a spherical surface with minimal metric distortion, for providing a simpler shape for analysis. , a registration or learning-based labeling method is adopted to parcellate ROIs on the mapped spherical surface. , parcellation labels on the spherical surface are mapped back to the original cortical surface. Despite great success, spherical mapping of the original cortical surface is inherently sensitive to topological noise and cannot deal with the impaired brains that violate spherical topology. To address these issues, in this paper, we propose to directly parcellate the cerebral cortex on the original cortical surface manifold without requiring spherical mapping, by leveraging the strong learning ability of the graph convolutional neural networks. Also, we extend the convolution to the surface manifold using the kernel strategy, which enables us to over-come the notorious shape difference issue (e.g., different vertex number and connections) across different subjects. Our method aims to learn the highly nonlinear mapping between cortical attribute patterns (on local intrinsic surface patches) and parcellation labels. We have validated our method on a normal cortical surface dataset and a synthetic dataset with impaired brains, which shows that our method achieves comparable accuracy to the methods using spherical mapping, and works well on cortical surfaces violating the spherical topology.

摘要

将皮质表面自动分割为具有解剖学意义的感兴趣区域(ROI)在脑分析中非常重要。由于卷曲的大脑皮质形状复杂,传统方法通常需要三个步骤来获得分割结果。首先,将原始皮质表面反复膨胀并映射到具有最小度量失真的球面上,以便为分析提供更简单的形状。其次,采用基于配准或学习的标记方法在映射的球面上分割ROI。最后,将球面上的分割标签映射回原始皮质表面。尽管取得了巨大成功,但原始皮质表面的球面映射本质上对拓扑噪声敏感,并且无法处理违反球面拓扑的受损大脑。为了解决这些问题,在本文中,我们提出通过利用图卷积神经网络的强大学习能力,直接在原始皮质表面流形上分割大脑皮质,而无需球面映射。此外,我们使用核策略将卷积扩展到表面流形,这使我们能够克服不同受试者之间臭名昭著的形状差异问题(例如,不同的顶点数量和连接)。我们的方法旨在学习皮质属性模式(在局部内在表面斑块上)和分割标签之间的高度非线性映射。我们已经在正常皮质表面数据集和具有受损大脑的合成数据集上验证了我们的方法,这表明我们的方法与使用球面映射的方法具有可比的准确性,并且在违反球面拓扑的皮质表面上也能很好地工作。

相似文献

1
Intrinsic Patch-Based Cortical Anatomical Parcellation Using Graph Convolutional Neural Network on Surface Manifold.
Med Image Comput Comput Assist Interv. 2019 Oct;11766:492-500. doi: 10.1007/978-3-030-32248-9_55. Epub 2019 Oct 10.
2
Registration-Free Infant Cortical Surface Parcellation using Deep Convolutional Neural Networks.
Med Image Comput Comput Assist Interv. 2018 Sep;11072:672-680. doi: 10.1007/978-3-030-00931-1_77. Epub 2018 Sep 13.
3
Anatomically constrained squeeze-and-excitation graph attention network for cortical surface parcellation.
Comput Biol Med. 2022 Jan;140:105113. doi: 10.1016/j.compbiomed.2021.105113. Epub 2021 Dec 4.
4
Geometric Brain Surface Network For Brain Cortical Parcellation.
Graph Learn Med Imaging (2019). 2019;11849:120-129. doi: 10.1007/978-3-030-35817-4_15. Epub 2019 Nov 14.
5
Spherical U-Net on Cortical Surfaces: Methods and Applications.
Inf Process Med Imaging. 2019 Jun;11492:855-866. doi: 10.1007/978-3-030-20351-1_67. Epub 2019 May 22.
6
SPHERICAL U-NET FOR INFANT CORTICAL SURFACE PARCELLATION.
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:1882-1886. doi: 10.1109/ISBI.2019.8759537. Epub 2019 Jul 11.
7
AUTOMATIC PARCELLATION OF CORTICAL SURFACES USING RANDOM FORESTS.
Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:810-813. doi: 10.1109/ISBI.2015.7163995.
8
Longitudinally consistent registration and parcellation of cortical surfaces using semi-supervised learning.
Med Image Anal. 2024 Aug;96:103193. doi: 10.1016/j.media.2024.103193. Epub 2024 May 7.
9
A Deep Network for Joint Registration and Parcellation of Cortical Surfaces.
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12904:171-181. doi: 10.1007/978-3-030-87202-1_17. Epub 2021 Sep 21.
10
Spherical Deformable U-Net: Application to Cortical Surface Parcellation and Development Prediction.
IEEE Trans Med Imaging. 2021 Apr;40(4):1217-1228. doi: 10.1109/TMI.2021.3050072. Epub 2021 Apr 1.

引用本文的文献

1
Pseudo-Rendering for Resolution and Topology-Invariant Cortical Parcellation.
Mach Learn Med Imaging. 2025;15242:74-84. doi: 10.1007/978-3-031-73290-4_8. Epub 2024 Oct 23.
2
Application of improved graph convolutional network for cortical surface parcellation.
Sci Rep. 2025 May 12;15(1):16409. doi: 10.1038/s41598-025-00116-0.
3
Longitudinally consistent registration and parcellation of cortical surfaces using semi-supervised learning.
Med Image Anal. 2024 Aug;96:103193. doi: 10.1016/j.media.2024.103193. Epub 2024 May 7.
5
Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past, Present and Future.
Sensors (Basel). 2021 Jul 12;21(14):4758. doi: 10.3390/s21144758.
6
Convolutional Bayesian Models for Anatomical Landmarking on Multi-Dimensional Shapes.
Med Image Comput Comput Assist Interv. 2020;12264:786-796. doi: 10.1007/978-3-030-59719-1_76. Epub 2020 Sep 29.

本文引用的文献

1
Spherical U-Net on Cortical Surfaces: Methods and Applications.
Inf Process Med Imaging. 2019 Jun;11492:855-866. doi: 10.1007/978-3-030-20351-1_67. Epub 2019 May 22.
2
Registration-Free Infant Cortical Surface Parcellation using Deep Convolutional Neural Networks.
Med Image Comput Comput Assist Interv. 2018 Sep;11072:672-680. doi: 10.1007/978-3-030-00931-1_77. Epub 2018 Sep 13.
3
Graph Convolutions on Spectral Embeddings for Cortical Surface Parcellation.
Med Image Anal. 2019 May;54:297-305. doi: 10.1016/j.media.2019.03.012. Epub 2019 Mar 30.
4
CONSTRUCTION OF SPATIOTEMPORAL NEONATAL CORTICAL SURFACE ATLASES USING A LARGE-SCALE DATASET.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1056-1059. doi: 10.1109/ISBI.2018.8363753. Epub 2018 May 24.
5
Computational neuroanatomy of baby brains: A review.
Neuroimage. 2019 Jan 15;185:906-925. doi: 10.1016/j.neuroimage.2018.03.042. Epub 2018 Mar 21.
6
A multi-modal parcellation of human cerebral cortex.
Nature. 2016 Aug 11;536(7615):171-178. doi: 10.1038/nature18933. Epub 2016 Jul 20.
7
Consistent sulcal parcellation of longitudinal cortical surfaces.
Neuroimage. 2011 Jul 1;57(1):76-88. doi: 10.1016/j.neuroimage.2011.03.064. Epub 2011 Apr 5.
8
Automatic segmentation of human brain sulci.
Med Image Anal. 2008 Aug;12(4):442-451. doi: 10.1016/j.media.2008.01.003. Epub 2008 Feb 6.
9
An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
Neuroimage. 2006 Jul 1;31(3):968-80. doi: 10.1016/j.neuroimage.2006.01.021. Epub 2006 Mar 10.
10
High-resolution intersubject averaging and a coordinate system for the cortical surface.
Hum Brain Mapp. 1999;8(4):272-84. doi: 10.1002/(sici)1097-0193(1999)8:4<272::aid-hbm10>3.0.co;2-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验