Wu Zhengwang, Zhao Fenqiang, Xia Jing, Wang Li, Lin Weili, Gilmore John H, Li Gang, Shen Dinggang
Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, USA.
Med Image Comput Comput Assist Interv. 2019 Oct;11766:492-500. doi: 10.1007/978-3-030-32248-9_55. Epub 2019 Oct 10.
Automatic parcellation of cortical surfaces into anatomically meaningful regions of interest (ROIs) is of great importance in brain analysis. Due to the complex shape of the convoluted cerebral cortex, conventional methods generally require three steps to obtain the parcellations. , the original cortical surface is iteratively inflated and mapped onto a spherical surface with minimal metric distortion, for providing a simpler shape for analysis. , a registration or learning-based labeling method is adopted to parcellate ROIs on the mapped spherical surface. , parcellation labels on the spherical surface are mapped back to the original cortical surface. Despite great success, spherical mapping of the original cortical surface is inherently sensitive to topological noise and cannot deal with the impaired brains that violate spherical topology. To address these issues, in this paper, we propose to directly parcellate the cerebral cortex on the original cortical surface manifold without requiring spherical mapping, by leveraging the strong learning ability of the graph convolutional neural networks. Also, we extend the convolution to the surface manifold using the kernel strategy, which enables us to over-come the notorious shape difference issue (e.g., different vertex number and connections) across different subjects. Our method aims to learn the highly nonlinear mapping between cortical attribute patterns (on local intrinsic surface patches) and parcellation labels. We have validated our method on a normal cortical surface dataset and a synthetic dataset with impaired brains, which shows that our method achieves comparable accuracy to the methods using spherical mapping, and works well on cortical surfaces violating the spherical topology.
将皮质表面自动分割为具有解剖学意义的感兴趣区域(ROI)在脑分析中非常重要。由于卷曲的大脑皮质形状复杂,传统方法通常需要三个步骤来获得分割结果。首先,将原始皮质表面反复膨胀并映射到具有最小度量失真的球面上,以便为分析提供更简单的形状。其次,采用基于配准或学习的标记方法在映射的球面上分割ROI。最后,将球面上的分割标签映射回原始皮质表面。尽管取得了巨大成功,但原始皮质表面的球面映射本质上对拓扑噪声敏感,并且无法处理违反球面拓扑的受损大脑。为了解决这些问题,在本文中,我们提出通过利用图卷积神经网络的强大学习能力,直接在原始皮质表面流形上分割大脑皮质,而无需球面映射。此外,我们使用核策略将卷积扩展到表面流形,这使我们能够克服不同受试者之间臭名昭著的形状差异问题(例如,不同的顶点数量和连接)。我们的方法旨在学习皮质属性模式(在局部内在表面斑块上)和分割标签之间的高度非线性映射。我们已经在正常皮质表面数据集和具有受损大脑的合成数据集上验证了我们的方法,这表明我们的方法与使用球面映射的方法具有可比的准确性,并且在违反球面拓扑的皮质表面上也能很好地工作。