IEEE Trans Med Imaging. 2021 Apr;40(4):1217-1228. doi: 10.1109/TMI.2021.3050072. Epub 2021 Apr 1.
Convolutional Neural Networks (CNNs) have achieved overwhelming success in learning-related problems for 2D/3D images in the Euclidean space. However, unlike in the Euclidean space, the shapes of many structures in medical imaging have an inherent spherical topology in a manifold space, e.g., the convoluted brain cortical surfaces represented by triangular meshes. There is no consistent neighborhood definition and thus no straightforward convolution/pooling operations for such cortical surface data. In this paper, leveraging the regular and hierarchical geometric structure of the resampled spherical cortical surfaces, we create the 1-ring filter on spherical cortical triangular meshes and accordingly develop convolution/pooling operations for constructing Spherical U-Net for cortical surface data. However, the regular nature of the 1-ring filter makes it inherently limited to model fixed geometric transformations. To further enhance the transformation modeling capability of Spherical U-Net, we introduce the deformable convolution and deformable pooling to cortical surface data and accordingly propose the Spherical Deformable U-Net (SDU-Net). Specifically, spherical offsets are learned to freely deform the 1-ring filter on the sphere to adaptively localize cortical structures with different sizes and shapes. We then apply the SDU-Net to two challenging and scientifically important tasks in neuroimaging: cortical surface parcellation and cortical attribute map prediction. Both applications validate the competitive performance of our approach in accuracy and computational efficiency in comparison with state-of-the-art methods.
卷积神经网络 (CNNs) 在欧几里得空间中学习二维/三维图像相关问题方面取得了巨大成功。然而,与欧几里得空间不同,医学成像中许多结构的形状在流形空间中具有固有球形拓扑结构,例如由三角网格表示的大脑皮质的卷曲表面。此类皮质表面数据没有一致的邻域定义,因此没有直接的卷积/池化操作。在本文中,我们利用重采样的球面皮质三角网格的规则和分层几何结构,在球面皮质三角网格上创建 1 环滤波器,并相应地开发卷积/池化操作,以构建用于皮质表面数据的球面 U-Net。然而,1 环滤波器的规则性质使其本质上仅限于对固定几何变换的建模。为了进一步提高球面 U-Net 的变换建模能力,我们将可变形卷积和可变形池化引入到皮质表面数据中,并相应地提出了球面可变形 U-Net (SDU-Net)。具体来说,学习球面偏移量以使 1 环滤波器在球面上自由变形,以自适应地定位具有不同大小和形状的皮质结构。然后,我们将 SDU-Net 应用于神经影像学中的两个具有挑战性和科学重要性的任务:皮质表面分割和皮质属性图预测。这两个应用都验证了我们的方法在准确性和计算效率方面与最先进方法相比具有竞争力。