Suppr超能文献

球形可变形 U-Net:在皮质表面分割和发育预测中的应用。

Spherical Deformable U-Net: Application to Cortical Surface Parcellation and Development Prediction.

出版信息

IEEE Trans Med Imaging. 2021 Apr;40(4):1217-1228. doi: 10.1109/TMI.2021.3050072. Epub 2021 Apr 1.

Abstract

Convolutional Neural Networks (CNNs) have achieved overwhelming success in learning-related problems for 2D/3D images in the Euclidean space. However, unlike in the Euclidean space, the shapes of many structures in medical imaging have an inherent spherical topology in a manifold space, e.g., the convoluted brain cortical surfaces represented by triangular meshes. There is no consistent neighborhood definition and thus no straightforward convolution/pooling operations for such cortical surface data. In this paper, leveraging the regular and hierarchical geometric structure of the resampled spherical cortical surfaces, we create the 1-ring filter on spherical cortical triangular meshes and accordingly develop convolution/pooling operations for constructing Spherical U-Net for cortical surface data. However, the regular nature of the 1-ring filter makes it inherently limited to model fixed geometric transformations. To further enhance the transformation modeling capability of Spherical U-Net, we introduce the deformable convolution and deformable pooling to cortical surface data and accordingly propose the Spherical Deformable U-Net (SDU-Net). Specifically, spherical offsets are learned to freely deform the 1-ring filter on the sphere to adaptively localize cortical structures with different sizes and shapes. We then apply the SDU-Net to two challenging and scientifically important tasks in neuroimaging: cortical surface parcellation and cortical attribute map prediction. Both applications validate the competitive performance of our approach in accuracy and computational efficiency in comparison with state-of-the-art methods.

摘要

卷积神经网络 (CNNs) 在欧几里得空间中学习二维/三维图像相关问题方面取得了巨大成功。然而,与欧几里得空间不同,医学成像中许多结构的形状在流形空间中具有固有球形拓扑结构,例如由三角网格表示的大脑皮质的卷曲表面。此类皮质表面数据没有一致的邻域定义,因此没有直接的卷积/池化操作。在本文中,我们利用重采样的球面皮质三角网格的规则和分层几何结构,在球面皮质三角网格上创建 1 环滤波器,并相应地开发卷积/池化操作,以构建用于皮质表面数据的球面 U-Net。然而,1 环滤波器的规则性质使其本质上仅限于对固定几何变换的建模。为了进一步提高球面 U-Net 的变换建模能力,我们将可变形卷积和可变形池化引入到皮质表面数据中,并相应地提出了球面可变形 U-Net (SDU-Net)。具体来说,学习球面偏移量以使 1 环滤波器在球面上自由变形,以自适应地定位具有不同大小和形状的皮质结构。然后,我们将 SDU-Net 应用于神经影像学中的两个具有挑战性和科学重要性的任务:皮质表面分割和皮质属性图预测。这两个应用都验证了我们的方法在准确性和计算效率方面与最先进方法相比具有竞争力。

相似文献

2
Spherical U-Net on Cortical Surfaces: Methods and Applications.皮质表面的球形U-Net:方法与应用
Inf Process Med Imaging. 2019 Jun;11492:855-866. doi: 10.1007/978-3-030-20351-1_67. Epub 2019 May 22.
3
SPHERICAL U-NET FOR INFANT CORTICAL SURFACE PARCELLATION.用于婴儿皮质表面分割的球形U-Net
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:1882-1886. doi: 10.1109/ISBI.2019.8759537. Epub 2019 Jul 11.
4
SPHARM-Net: Spherical Harmonics-Based Convolution for Cortical Parcellation.SPHARM-Net:基于球谐函数的皮层分割卷积。
IEEE Trans Med Imaging. 2022 Oct;41(10):2739-2751. doi: 10.1109/TMI.2022.3168670. Epub 2022 Sep 30.
5
SPHERICAL TRANSFORMER FOR QUALITY ASSESSMENT OF PEDIATRIC CORTICAL SURFACES.用于小儿皮质表面质量评估的球形变压器
Proc IEEE Int Symp Biomed Imaging. 2022 Mar;2022. doi: 10.1109/isbi52829.2022.9761609. Epub 2022 Apr 26.
8
Spherical Transformer on Cortical Surfaces.皮质表面的球面变压器
Mach Learn Med Imaging. 2022 Sep;2022:406-415. doi: 10.1007/978-3-031-21014-3_42. Epub 2022 Dec 16.
9
Cortical Surface Parcellation using Spherical Convolutional Neural Networks.使用球面卷积神经网络进行皮质表面分割
Med Image Comput Comput Assist Interv. 2019 Oct;11766:501-509. doi: 10.1007/978-3-030-32248-9_56. Epub 2019 Oct 10.

引用本文的文献

1
TAU PET HARMONIZATION VIA SURFACE-BASED DIFFUSION MODEL.通过基于表面的扩散模型实现tau蛋白正电子发射断层显像标准化
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10981166. Epub 2025 May 12.
2
UNSUPERVISED CORTICAL SURFACE REGISTRATION NETWORK FOR ALIGNING GYRALNET.用于对齐脑回网络的无监督皮质表面配准网络
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10981138. Epub 2025 May 12.
5
Deformable Spherical Transformer for Cerebellar Surface Parcellation.用于小脑表面分割的可变形球形变压器
Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230447. Epub 2023 Sep 1.

本文引用的文献

1
Spherical U-Net on Cortical Surfaces: Methods and Applications.皮质表面的球形U-Net:方法与应用
Inf Process Med Imaging. 2019 Jun;11492:855-866. doi: 10.1007/978-3-030-20351-1_67. Epub 2019 May 22.
3
Cortical Surface Parcellation using Spherical Convolutional Neural Networks.使用球面卷积神经网络进行皮质表面分割
Med Image Comput Comput Assist Interv. 2019 Oct;11766:501-509. doi: 10.1007/978-3-030-32248-9_56. Epub 2019 Oct 10.
4
SPHERICAL U-NET FOR INFANT CORTICAL SURFACE PARCELLATION.用于婴儿皮质表面分割的球形U-Net
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:1882-1886. doi: 10.1109/ISBI.2019.8759537. Epub 2019 Jul 11.
5
Registration-Free Infant Cortical Surface Parcellation using Deep Convolutional Neural Networks.使用深度卷积神经网络的无配准婴儿皮质表面分区
Med Image Comput Comput Assist Interv. 2018 Sep;11072:672-680. doi: 10.1007/978-3-030-00931-1_77. Epub 2018 Sep 13.
6
Graph Convolutions on Spectral Embeddings for Cortical Surface Parcellation.谱嵌入图卷积在皮质表面分割中的应用。
Med Image Anal. 2019 May;54:297-305. doi: 10.1016/j.media.2019.03.012. Epub 2019 Mar 30.
7
Ultra-Fast T2-Weighted MR Reconstruction Using Complementary T1-Weighted Information.利用互补T1加权信息的超快速T2加权磁共振重建
Med Image Comput Comput Assist Interv. 2018 Sep;11070:215-223. doi: 10.1007/978-3-030-00928-1_25. Epub 2018 Sep 26.
10
Computational neuroanatomy of baby brains: A review.婴儿大脑的计算神经解剖学:综述。
Neuroimage. 2019 Jan 15;185:906-925. doi: 10.1016/j.neuroimage.2018.03.042. Epub 2018 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验