Suppr超能文献

光学谐振体异质结硫化铅量子点太阳能电池。

Optically Resonant Bulk Heterojunction PbS Quantum Dot Solar Cell.

作者信息

Tabernig Stefan W, Yuan Lin, Cordaro Andrea, Teh Zhi Li, Gao Yijun, Patterson Robert J, Pusch Andreas, Huang Shujuan, Polman Albert

机构信息

Center for Nanophotonics, NWO-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.

School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, 229 Anzac Parade, 2052 Sydney, Australia.

出版信息

ACS Nano. 2022 Sep 27;16(9):13750-13760. doi: 10.1021/acsnano.1c11330. Epub 2022 Aug 29.

Abstract

We design an optically resonant bulk heterojunction solar cell to study optoelectronic properties of nanostructured p-n junctions. The nanostructures yield strong light-matter interaction as well as distinct charge-carrier extraction behavior, which together improve the overall power conversion efficiency. We demonstrate high-resolution substrate conformal soft-imprint lithography technology in combination with state-of-the art ZnO nanoparticles to create a nanohole template in an electron transport layer. The nanoholes are infiltrated with PbS quantum dots (QDs) to form a nanopatterned depleted heterojunction. Optical simulations show that the absorption per unit volume in the cylindrical QD absorber layer is enhanced by 19.5% compared to a planar reference. This is achieved for a square array of QD nanopillars of 330 nm height and 320 nm diameter, with a pitch of 500 nm on top of a residual QD layer of 70 nm, surrounded by ZnO. Electronic simulations show that the patterning results in a current gain of 3.2 mA/cm and a slight gain in voltage, yielding an efficiency gain of 0.4%. Our simulations further show that the fill factor is highly sensitive to the patterned structure. This is explained by the electric field strength varying strongly across the patterned absorber. We outline a path toward further optimized optically resonant nanopattern geometries with enhanced carrier collection properties. We demonstrate a 0.74 mA/cm current gain for a patterned cell compared to a planar cell in experiments, owing to a much improved infrared response, as predicted by our simulations.

摘要

我们设计了一种光学共振体异质结太阳能电池,以研究纳米结构的p-n结的光电特性。这些纳米结构产生了强烈的光与物质相互作用以及独特的电荷载流子提取行为,两者共同提高了整体功率转换效率。我们展示了高分辨率的衬底共形软压印光刻技术,并结合先进的ZnO纳米颗粒,在电子传输层中创建了一个纳米孔模板。纳米孔中注入了PbS量子点(QD)以形成纳米图案化的耗尽异质结。光学模拟表明,与平面参考相比,圆柱形QD吸收层中每单位体积的吸收率提高了19.5%。对于高度为330 nm、直径为320 nm、间距为500 nm的QD纳米柱方形阵列,在70 nm的残余QD层顶部,周围是ZnO,实现了这一效果。电子模拟表明,图案化导致电流增益为3.2 mA/cm,电压略有增加,效率增益为0.4%。我们的模拟进一步表明,填充因子对图案化结构高度敏感。这可以通过图案化吸收体上电场强度的强烈变化来解释。我们概述了一条通往具有增强载流子收集特性的进一步优化光学共振纳米图案几何形状的途径。正如我们的模拟所预测的,由于红外响应有了很大改善,在实验中,我们展示了图案化电池与平面电池相比,电流增益为0.74 mA/cm。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62a7/9527793/7adade97c95b/nn1c11330_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验