Suppr超能文献

恢复细胞能量代谢促进脊髓损伤后轴突再生和功能恢复。

Restoring Cellular Energetics Promotes Axonal Regeneration and Functional Recovery after Spinal Cord Injury.

作者信息

Han Qi, Xie Yuxiang, Ordaz Josue D, Huh Andrew J, Huang Ning, Wu Wei, Liu Naikui, Chamberlain Kelly A, Sheng Zu-Hang, Xu Xiao-Ming

机构信息

Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Cell Metab. 2020 Mar 3;31(3):623-641.e8. doi: 10.1016/j.cmet.2020.02.002.

Abstract

Axonal regeneration in the central nervous system (CNS) is a highly energy-demanding process. Extrinsic insults and intrinsic restrictions lead to an energy crisis in injured axons, raising the question of whether recovering energy deficits facilitates regeneration. Here, we reveal that enhancing axonal mitochondrial transport by deleting syntaphilin (Snph) recovers injury-induced mitochondrial depolarization. Using three CNS injury mouse models, we demonstrate that Snph mice display enhanced corticospinal tract (CST) regeneration passing through a spinal cord lesion, accelerated regrowth of monoaminergic axons across a transection gap, and increased compensatory sprouting of uninjured CST. Notably, regenerated CST axons form functional synapses and promote motor functional recovery. Administration of the bioenergetic compound creatine boosts CST regenerative capacity in Snph mice. Our study provides mechanistic insights into intrinsic regeneration failure in CNS and suggests that enhancing mitochondrial transport and cellular energetics are promising strategies to promote regeneration and functional restoration after CNS injuries.

摘要

中枢神经系统(CNS)中的轴突再生是一个高能量需求的过程。外在损伤和内在限制会导致受损轴突出现能量危机,这就引发了一个问题,即恢复能量不足是否有助于再生。在这里,我们发现通过删除突触结合蛋白(Snph)来增强轴突线粒体运输,可以恢复损伤诱导的线粒体去极化。使用三种中枢神经系统损伤小鼠模型,我们证明Snph基因敲除小鼠在穿过脊髓损伤处时皮质脊髓束(CST)再生增强,单胺能轴突在横断间隙处的再生加速,以及未受损的CST的代偿性芽生增加。值得注意的是,再生的CST轴突形成功能性突触并促进运动功能恢复。给予生物能量化合物肌酸可增强Snph基因敲除小鼠的CST再生能力。我们的研究为中枢神经系统内在再生失败提供了机制性见解,并表明增强线粒体运输和细胞能量代谢是促进中枢神经系统损伤后再生和功能恢复的有前景的策略。

相似文献

引用本文的文献

本文引用的文献

4
Dissecting spinal cord regeneration.解析脊髓再生。
Nature. 2018 May;557(7705):343-350. doi: 10.1038/s41586-018-0068-4. Epub 2018 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验