Suppr超能文献

高通量筛选预测化学分析干扰。

High-Throughput Screening to Predict Chemical-Assay Interference.

机构信息

NIH/NIEHS/DIR/BCBB, RTP, NC, United States.

NIH/NCATS, Bethesda, MD, United States.

出版信息

Sci Rep. 2020 Mar 4;10(1):3986. doi: 10.1038/s41598-020-60747-3.

Abstract

The U.S. federal consortium on toxicology in the 21 century (Tox21) produces quantitative, high-throughput screening (HTS) data on thousands of chemicals across a wide range of assays covering critical biological targets and cellular pathways. Many of these assays, and those used in other in vitro screening programs, rely on luciferase and fluorescence-based readouts that can be susceptible to signal interference by certain chemical structures resulting in false positive outcomes. Included in the Tox21 portfolio are assays specifically designed to measure interference in the form of luciferase inhibition and autofluorescence via multiple wavelengths (red, blue, and green) and under various conditions (cell-free and cell-based, two cell types). Out of 8,305 chemicals tested in the Tox21 interference assays, percent actives ranged from 0.5% (red autofluorescence) to 9.9% (luciferase inhibition). Self-organizing maps and hierarchical clustering were used to relate chemical structural clusters to interference activity profiles. Multiple machine learning algorithms were applied to predict assay interference based on molecular descriptors and chemical properties. The best performing predictive models (accuracies of ~80%) have been included in a web-based tool called InterPred that will allow users to predict the likelihood of assay interference for any new chemical structure and thus increase confidence in HTS data by decreasing false positive testing results.

摘要

21 世纪美国毒理学联邦联盟(Tox21)生成了数千种化学物质的定量高通量筛选(HTS)数据,涵盖了广泛的生物靶标和细胞途径的检测。这些检测中的许多检测,以及其他体外筛选计划中使用的检测,都依赖于基于荧光素酶和荧光的读数,这些读数可能容易受到某些化学结构的信号干扰,从而导致假阳性结果。Tox21 组合中包括专门设计的检测,通过多波长(红、蓝、绿)和各种条件(无细胞和基于细胞的两种细胞类型),用于测量荧光素酶抑制和自发荧光的干扰。在 Tox21 干扰检测中测试的 8305 种化学物质中,活性百分比范围为 0.5%(红色自发荧光)至 9.9%(荧光素酶抑制)。自组织映射和层次聚类用于将化学结构簇与干扰活性谱相关联。应用多种机器学习算法基于分子描述符和化学性质预测测定干扰。表现最佳的预测模型(准确率约为 80%)已包含在一个名为 InterPred 的基于网络的工具中,该工具将允许用户预测任何新化学结构的测定干扰的可能性,从而通过减少假阳性测试结果来提高 HTS 数据的可信度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a556/7055224/c45d1a9f9e17/41598_2020_60747_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验