Suppr超能文献

三维级联卷积网络用于多脊椎骨分割。

3D Cascaded Convolutional Networks for Multi-vertebrae Segmentation.

机构信息

School of Automation, Harbin University of Science and Technology, Harbin 150001, China.

出版信息

Curr Med Imaging. 2020;16(3):231-240. doi: 10.2174/1573405615666181204151943.

Abstract

BACKGROUND

Automatic approach to vertebrae segmentation from computed tomography (CT) images is very important in clinical applications. As the intricate appearance and variable architecture of vertebrae across the population, cognate constructions in close vicinity, pathology, and the interconnection between vertebrae and ribs, it is a challenge to propose a 3D automatic vertebrae CT image segmentation method.

OBJECTIVE

The purpose of this study was to propose an automatic multi-vertebrae segmentation method for spinal CT images.

METHODS

Firstly, CLAHE-Threshold-Expansion was preprocessed to improve image quality and reduce input voxel points. Then, 3D coarse segmentation fully convolutional network and cascaded finely segmentation convolutional neural network were used to complete multi-vertebrae segmentation and classification.

RESULTS

The results of this paper were compared with the other methods on the same datasets. Experimental results demonstrated that the Dice similarity coefficient (DSC) in this paper is 94.84%, higher than the V-net and 3D U-net.

CONCLUSION

Method of this paper has certain advantages in automatically and accurately segmenting vertebrae regions of CT images. Due to the easy acquisition of spine CT images. It was proven to be more conducive to clinical application of treatment that uses our segmentation model to obtain vertebrae regions, combining with the subsequent 3D reconstruction and printing work.

摘要

背景

从计算机断层扫描(CT)图像中自动进行脊椎分割在临床应用中非常重要。由于脊椎在人群中的形态复杂且结构多样,毗邻结构相似,存在病变,以及脊椎与肋骨之间的连接,因此提出一种 3D 自动脊椎 CT 图像分割方法具有一定的挑战性。

目的

本研究旨在提出一种用于脊椎 CT 图像的自动多脊椎分割方法。

方法

首先,采用 CLAHE-Threshold-Expansion 预处理方法,以提高图像质量并减少输入体素点。然后,使用 3D 粗分割全卷积网络和级联精细分割卷积神经网络完成多脊椎分割和分类。

结果

本文的结果与同一数据集上的其他方法进行了比较。实验结果表明,本文的 Dice 相似系数(DSC)为 94.84%,高于 V-net 和 3D U-net。

结论

本文的方法在自动准确地分割 CT 图像的脊椎区域方面具有一定的优势。由于脊椎 CT 图像易于获取,使用我们的分割模型获取脊椎区域,结合后续的 3D 重建和打印工作,被证明更有利于临床治疗的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验