Suppr超能文献

磁活性微柱阵列的形状编程制造与驱动

Shape-Programmed Fabrication and Actuation of Magnetically Active Micropost Arrays.

作者信息

Jeon Jisoo, Park Jeong Eun, Park Sei Jin, Won Sukyoung, Zhao Hangbo, Kim Sanha, Shim Bong Sup, Urbas Augustine, Hart A John, Ku Zahyun, Wie Jeong Jae

机构信息

Department of Polymer Science and Engineering, Inha University, Incheon 22212, South Korea.

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.

出版信息

ACS Appl Mater Interfaces. 2020 Apr 8;12(14):17113-17120. doi: 10.1021/acsami.0c01511. Epub 2020 Mar 18.

Abstract

Micro- and nanotextured surfaces with reconfigurable textures can enable advancements in the control of wetting and heat transfer, directed assembly of complex materials, and reconfigurable optics, among many applications. However, reliable and programmable directional shape in large scale is significant for prescribed applications. Herein, we demonstrate the self-directed fabrication and actuation of large-area elastomer micropillar arrays, using magnetic fields to both program a shape-directed actuation response and rapidly and reversibly actuate the arrays. Specifically, alignment of magnetic microparticles during casting of micropost arrays with hemicylindrical shapes imparts a deterministic anisotropy that can be exploited to achieve the prescribed, large-deformation bending or twisting of the pillars. The actuation coincides with the finite element method, and we demonstrate reversible, noncontact magnetic actuation of arrays of tens of thousands of pillars over hundreds of cycles, with the bending and twisting angles of up to 72 and 61°, respectively. Moreover, we demonstrate the use of the surfaces to control anisotropic liquid spreading and show that the capillary self-assembly of actuated micropost arrays enables highly complex architectures to be fabricated. The present technique could be scaled to indefinite areas using cost-effective materials and casting techniques, and the principle of shape-directed pillar actuation can be applied to other active material systems.

摘要

具有可重构纹理的微纳纹理表面能够在许多应用中推动润湿与传热控制、复杂材料的定向组装以及可重构光学等领域的发展。然而,对于特定应用而言,大规模可靠且可编程的定向形状至关重要。在此,我们展示了大面积弹性体微柱阵列的自导向制造与驱动,利用磁场既对形状导向的驱动响应进行编程,又能快速且可逆地驱动阵列。具体而言,在铸造半圆柱形微柱阵列过程中,磁性微粒的排列赋予了一种确定性的各向异性,可利用这种各向异性实现微柱规定的、大变形的弯曲或扭转。该驱动与有限元方法相符,我们展示了在数百个循环中对成千上万根柱子的阵列进行可逆、非接触式磁驱动,弯曲和扭转角度分别高达72°和61°。此外,我们展示了利用这些表面控制各向异性液体铺展,并表明驱动微柱阵列的毛细管自组装能够制造出高度复杂的结构。本技术可使用经济高效的材料和铸造技术扩展到无限大的面积,并且形状导向柱驱动的原理可应用于其他活性材料系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验