Suppr超能文献

通过3D打印制备的高度多孔且结构设计的复合支架实现药物的可持续释放。

Sustainable drug release from highly porous and architecturally engineered composite scaffolds prepared by 3D printing.

作者信息

Tamjid Elnaz, Bohlouli Mahsa, Mohammadi Soheila, Alipour Hossein, Nikkhah Maryam

机构信息

Department of Nanobiotechnology, Tarbiat Modares University, Tehran, Iran.

Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran.

出版信息

J Biomed Mater Res A. 2020 Jun;108(6):1426-1438. doi: 10.1002/jbm.a.36914. Epub 2020 Mar 10.

Abstract

Additive manufacturing techniques have evolved novel opportunities for the fabrication of highly porous composite scaffolds with well-controlled and interconnected pore structures which is notably important for tissue engineering. In this work, poly (ε-caprolactone) (PCL)-based composite scaffolds (average pore diameter of 450 μm and strut thickness of 400 μm) reinforced with 10 vol% bioactive glass particles (BG; ∼6 μm) or TiO nanoparticles (∼21 nm), containing different concentrations of tetracycline hydrochloride (TCH) as an antimicrobial agent, were prepared by 3D printing. In order to investigate the effect of fabrication process and scaffold geometry on the biocompatibility, drug release kinetics, and antibacterial activity, polymer and composite films (2D structures) were also prepared by solvent casting method. We demonstrate that even without any additional coating layer, sustainable release can be attained on highly porous scaffolds prepared by 3D printing due to chemical interactions between functional groups of TCH and the bioactive particles. Herein, the effect of TiO nanoparticles on the release rate is substantially more pronounced than BG particles. Nevertheless, agar well-diffusion and MTT assays determine better cellular viability and higher antibacterial effect for PCL/BG composite. Although all the drug-eluting composite scaffolds exhibit acceptable hemocompatibility, in vitro cellular and bacterial studies also determine that the maximum amount of TCH that can inhibit gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria without cytotoxicity effect (≥95% viability) is 0.57 mg/ml. These findings may pave the way for designing structurally engineered composite scaffolds with sustainable drug release profile by additive manufacturing techniques for tissue engineering applications.

摘要

增材制造技术为制造具有良好控制且相互连通的孔隙结构的高孔隙率复合支架带来了新机遇,这对组织工程尤为重要。在本研究中,通过3D打印制备了以聚(ε-己内酯)(PCL)为基础的复合支架(平均孔径为450μm,支柱厚度为400μm),该支架用10体积%的生物活性玻璃颗粒(BG;约6μm)或TiO纳米颗粒(约21nm)增强,并含有不同浓度的作为抗菌剂的盐酸四环素(TCH)。为了研究制造工艺和支架几何形状对生物相容性、药物释放动力学和抗菌活性的影响,还通过溶剂浇铸法制备了聚合物和复合薄膜(二维结构)。我们证明,即使没有任何额外的涂层,由于TCH官能团与生物活性颗粒之间的化学相互作用,3D打印制备的高孔隙率支架也能实现药物的持续释放。在此,TiO纳米颗粒对释放速率的影响比BG颗粒更为显著。然而,琼脂扩散法和MTT试验表明PCL/BG复合材料具有更好的细胞活力和更高的抗菌效果。尽管所有载药复合支架都表现出可接受的血液相容性,但体外细胞和细菌研究也表明,在无细胞毒性作用(存活率≥95%)的情况下,能抑制革兰氏阳性菌(金黄色葡萄球菌)和革兰氏阴性菌(大肠杆菌)的TCH最大量为0.57mg/ml。这些发现可能为通过增材制造技术设计用于组织工程应用的具有可持续药物释放特性的结构工程复合支架铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验