Suppr超能文献

带隙以上螺旋状WS₂中极端光学非线性的机制

Mechanism of Extreme Optical Nonlinearities in Spiral WS above the Bandgap.

作者信息

Fan Xiaopeng, Ji Zhurun, Fei Ruixiang, Zheng Weihao, Liu Wenjing, Zhu Xiaoli, Chen Shula, Yang Li, Liu Hongjun, Pan Anlian, Agarwal Ritesh

机构信息

Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.

Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

出版信息

Nano Lett. 2020 Apr 8;20(4):2667-2673. doi: 10.1021/acs.nanolett.0c00305. Epub 2020 Mar 12.

Abstract

Layered two-dimensional transition-metal dichalcogenides (2D-TMDs) are promising building blocks for ultracompact optoelectronic applications. Recently, a strong second harmonic generation (SHG) was observed in spiral stacked TMD nanostructures which was explained by its low crystal symmetry. However, the relationship between the efficiency of SHG signals and the electronic band structure remains unclear. Here, we show that the SHG signal in spiral WS nanostructures is strongly enhanced (∼100 fold increase) not only when the second harmonic signal is in resonance with the exciton states but also when the excitation energy is slightly above the electronic band gap, which we attribute to a large interband Berry connection associated with certain optical transitions in spiral WS. The giant SHG enhancement observed and explained in this study could promote the understanding and utility of TMDs as highly efficient nonlinear optical materials and potentially lead to a new pathway to fabricate more efficient optical energy conversion devices.

摘要

层状二维过渡金属二硫属化物(2D-TMDs)是超紧凑型光电器件中很有前景的构建模块。最近,在螺旋堆叠的TMD纳米结构中观察到了强烈的二次谐波产生(SHG),这是由其低晶体对称性所解释的。然而,SHG信号效率与电子能带结构之间的关系仍不清楚。在这里,我们表明,螺旋WS纳米结构中的SHG信号不仅在二次谐波信号与激子态共振时会强烈增强(增加约100倍),而且当激发能量略高于电子带隙时也会增强,我们将其归因于与螺旋WS中某些光学跃迁相关的大的带间贝里连接。本研究中观察到并解释的巨大SHG增强效应,有助于增进对TMDs作为高效非线性光学材料的理解和应用,并有可能为制造更高效的光能转换器件开辟一条新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验