Suppr超能文献

2lpiRNApred:一种基于LFE-GM特征选择识别piRNA及其功能的双层集成算法。

2lpiRNApred: a two-layered integrated algorithm for identifying piRNAs and their functions based on LFE-GM feature selection.

作者信息

Zuo Yun, Zou Quan, Lin Jianyuan, Jiang Min, Liu Xiangrong

机构信息

Department of Computer Science, Xiamen University , Xiamen, China.

Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China , China.

出版信息

RNA Biol. 2020 Jun;17(6):892-902. doi: 10.1080/15476286.2020.1734382. Epub 2020 Mar 5.

Abstract

Piwi-interacting RNAs (piRNAs) are indispensable in the transposon silencing, including in germ cell formation, germline stem cell maintenance, spermatogenesis, and oogenesis. piRNA pathways are amongst the major genome defence mechanisms, which maintain genome integrity. They also have important functions in tumorigenesis, as indicated by aberrantly expressed piRNAs being recently shown to play roles in the process of cancer development. A number of computational methods for this have recently been proposed, but they still have not yielded satisfactory predictive performance. Moreover, only one computational method that identifies whether piRNAs function in inducting target mRNA deadenylation been reported in the literature. In this study, we developed a two-layered integrated classifier algorithm, 2lpiRNApred. It identifies piRNAs in the first layer and determines whether they function in inducting target mRNA deadenylation in the second layer. A new feature selection algorithm, which was based on Luca fuzzy entropy and Gaussian membership function (LFE-GM), was proposed to reduce the dimensionality of the features. Five feature extraction strategies, namely, Kmer, General parallel correlation pseudo-dinucleotide composition, General series correlation pseudo-dinucleotide composition, Normalized Moreau-Broto autocorrelation, and Geary autocorrelation, and two types of classifier, Sparse Representation Classifier (SRC) and support vector machine with Mahalanobis distance-based radial basis function (SVMMDRBF), were used to construct a two-layered integrated classifier algorithm, 2lpiRNApred. The results indicate that 2lpiRNApred performs significantly better than six other existing prediction tools.

摘要

Piwi相互作用RNA(piRNA)在转座子沉默中不可或缺,包括在生殖细胞形成、生殖系干细胞维持、精子发生和卵子发生过程中。piRNA通路是主要的基因组防御机制之一,可维持基因组完整性。它们在肿瘤发生中也具有重要作用,最近有研究表明异常表达的piRNA在癌症发展过程中发挥作用。最近已经提出了许多用于此的计算方法,但它们仍未产生令人满意的预测性能。此外,文献中仅报道了一种识别piRNA是否在诱导靶mRNA去腺苷酸化中起作用的计算方法。在本研究中,我们开发了一种两层集成分类器算法2lpiRNApred。它在第一层识别piRNA,并在第二层确定它们是否在诱导靶mRNA去腺苷酸化中起作用。提出了一种基于卢卡模糊熵和高斯隶属函数(LFE-GM)的新特征选择算法,以降低特征维度。使用五种特征提取策略,即Kmer、广义并行相关伪二核苷酸组成、广义序列相关伪二核苷酸组成、归一化莫罗-布罗托自相关和吉尔里自相关,以及两种分类器,稀疏表示分类器(SRC)和基于马氏距离的径向基函数支持向量机(SVMMDRBF),构建了两层集成分类器算法2lpiRNApred。结果表明,2lpiRNApred的性能明显优于其他六种现有的预测工具。

相似文献

4
A k-mer scheme to predict piRNAs and characterize locust piRNAs.一种用于预测 piRNA 并描述蝗虫 piRNA 的 k-mer 方案。
Bioinformatics. 2011 Mar 15;27(6):771-6. doi: 10.1093/bioinformatics/btr016. Epub 2011 Jan 11.
5
piClust: a density based piRNA clustering algorithm.piClust:一种基于密度的piRNA聚类算法。
Comput Biol Chem. 2014 Jun;50:60-7. doi: 10.1016/j.compbiolchem.2014.01.008. Epub 2014 Jan 23.
7
piRNA identification based on motif discovery.基于基序发现的piRNA鉴定。
Mol Biosyst. 2014 Dec;10(12):3075-80. doi: 10.1039/c4mb00447g.

引用本文的文献

本文引用的文献

1
piRNN: deep learning algorithm for piRNA prediction.piRNN:用于piRNA预测的深度学习算法。
PeerJ. 2018 Aug 3;6:e5429. doi: 10.7717/peerj.5429. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验