Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
Nat Commun. 2020 Mar 5;11(1):1199. doi: 10.1038/s41467-020-15080-8.
To tackle the global antibiotic resistance crisis, antibiotic resistance acquired either vertically by chromosomal mutations or horizontally through antibiotic resistance genes (ARGs) have been studied. Yet, little is known about the interactions between the two, which may impact the evolution of antibiotic resistance. Here, we develop a multiplexed barcoded approach to assess the fitness of 144 mutant-ARG combinations in Escherichia coli subjected to eight different antibiotics at 11 different concentrations. While most interactions are neutral, we identify significant interactions for 12% of the mutant-ARG combinations. The ability of most ARGs to confer high-level resistance at a low fitness cost shields the selective dynamics of mutants at low drug concentrations. Therefore, high-fitness mutants are often selected regardless of their resistance level. Finally, we identify strong negative epistasis between two unrelated resistance mechanisms: the tetA tetracycline resistance gene and loss-of-function nuo mutations involved in aminoglycoside tolerance. Our study highlights important constraints that may allow better prediction and control of antibiotic resistance evolution.
为了解决全球抗生素耐药性危机,人们研究了通过染色体突变垂直获得的抗生素耐药性和通过抗生素耐药基因(ARGs)水平获得的抗生素耐药性。然而,人们对这两者之间的相互作用知之甚少,而这种相互作用可能会影响抗生素耐药性的进化。在这里,我们开发了一种多重编码的方法来评估 144 种突变-ARG 组合在大肠杆菌中对 8 种不同抗生素的 11 种不同浓度的适应性。虽然大多数相互作用是中性的,但我们发现 12%的突变-ARG 组合存在显著的相互作用。大多数 ARGs 能够以低适应性成本赋予高水平的耐药性,从而保护了低药物浓度下突变体的选择动态。因此,无论其耐药水平如何,高适应性的突变体通常都会被选择。最后,我们发现两种不相关的耐药机制之间存在强烈的负遗传相互作用:tetA 四环素耐药基因和涉及氨基糖苷类药物耐受的 nuo 功能丧失突变。我们的研究强调了可能允许更好地预测和控制抗生素耐药性进化的重要限制。