Suppr超能文献

评估机器学习方法在预测严重肢体缺血患者的医疗资源利用和医疗成本方面的应用——预防性和个性化方法即将出现?

Evaluation of machine learning methodology for the prediction of healthcare resource utilization and healthcare costs in patients with critical limb ischemia-is preventive and personalized approach on the horizon?

作者信息

Berger Jeffrey S, Haskell Lloyd, Ting Windsor, Lurie Fedor, Chang Shun-Chiao, Mueller Luke A, Elder Kenneth, Rich Kelly, Crivera Concetta, Schein Jeffrey R, Alas Veronica

机构信息

1New York University Langone Medical Center, Center for the Prevention of Cardiovascular Disease, New York, NY 10016 USA.

Janssen Scientific Affairs, LLC, Raritan, NJ 08869 USA.

出版信息

EPMA J. 2020 Jan 3;11(1):53-64. doi: 10.1007/s13167-019-00196-9. eCollection 2020 Mar.

Abstract

BACKGROUND

Critical limb ischemia (CLI) is a severe stage of peripheral arterial disease and has a substantial disease and economic burden not only to patients and families, but also to the society and healthcare systems. We aim to develop a personalized prediction model that utilizes baseline patient characteristics prior to CLI diagnosis to predict subsequent 1-year all-cause hospitalizations and total annual healthcare cost, using a novel Bayesian machine learning platform, Reverse Engineering Forward Simulation™ (REFS™), to support a paradigm shift from reactive healthcare to Predictive Preventive and Personalized Medicine (PPPM)-driven healthcare.

METHODS

Patients ≥ 50 years with CLI plus clinical activity for a 6-month pre-index and a 12-month post-index period or death during the post-index period were included in this retrospective cohort of the linked Optum-Humedica databases. REFS™ built an ensemble of 256 predictive models to identify predictors of all-cause hospitalizations and total annual all-cause healthcare costs during the 12-month post-index interval.

RESULTS

The mean age of 3189 eligible patients was 71.9 years. The most common CLI-related comorbidities were hypertension (79.5%), dyslipidemia (61.4%), coronary atherosclerosis and other heart disease (42.3%), and type 2 diabetes (39.2%). Post-index CLI-related healthcare utilization included inpatient services (14.6%) and ≥ 1 outpatient visits (32.1%). Median annual all-cause and CLI-related costs per patient were $30,514 and $2196, respectively. REFS™ identified diagnosis of skin and subcutaneous tissue infections, cellulitis and abscess, use of nonselective beta-blockers, other aftercare, and osteoarthritis as high confidence predictors of all-cause hospitalizations. The leading predictors for total all-cause costs included region of residence and comorbid health conditions including other diseases of kidney and ureters, blindness of vision defects, chronic ulcer of skin, and chronic ulcer of leg or foot.

CONCLUSIONS

REFS™ identified baseline predictors of subsequent healthcare resource utilization and costs in CLI patients. Machine learning and model-based, data-driven medicine may complement physicians' evidence-based medical services. These findings also support the PPPM framework that a paradigm shift from post-diagnosis disease care to early management of comorbidities and targeted prevention is warranted to deliver a cost-effective medical services and desirable healthcare economy.

摘要

背景

严重肢体缺血(CLI)是外周动脉疾病的严重阶段,不仅给患者及其家庭带来巨大的疾病和经济负担,也给社会和医疗保健系统造成负担。我们旨在开发一种个性化预测模型,该模型利用CLI诊断前的患者基线特征,通过一种新颖的贝叶斯机器学习平台——逆向工程正向模拟™(REFS™),预测随后1年的全因住院情况和年度总医疗费用,以支持从反应性医疗保健向预测性预防和个性化医疗(PPPM)驱动的医疗保健模式转变。

方法

本研究纳入了年龄≥50岁的CLI患者,这些患者在索引前6个月和索引后12个月内有临床活动,或在索引后期间死亡,该研究为Optum-Humedica数据库链接的回顾性队列研究。REFS™构建了一个由256个预测模型组成的集合,以识别索引后12个月内全因住院和年度全因医疗费用的预测因素。

结果

3189名符合条件的患者的平均年龄为71.9岁。最常见的与CLI相关的合并症为高血压(79.5%)、血脂异常(61.4%)、冠状动脉粥样硬化和其他心脏病(42.3%)以及2型糖尿病(39.2%)。索引后与CLI相关的医疗服务利用包括住院服务(14.6%)和≥1次门诊就诊(32.1%)。每位患者的年度全因和与CLI相关的费用中位数分别为30,514美元和2196美元。REFS™确定皮肤和皮下组织感染、蜂窝织炎和脓肿的诊断、非选择性β受体阻滞剂的使用、其他后续护理以及骨关节炎是全因住院的高置信度预测因素。全因总费用的主要预测因素包括居住地区和合并健康状况,包括肾脏和输尿管的其他疾病、视力缺陷导致的失明、皮肤慢性溃疡以及腿部或足部慢性溃疡。

结论

REFS™确定了CLI患者后续医疗资源利用和费用的基线预测因素。机器学习和基于模型的数据驱动医学可能补充医生基于证据的医疗服务。这些发现也支持PPPM框架,即从诊断后疾病护理向合并症的早期管理和有针对性的预防转变的模式转变是必要的,以提供具有成本效益的医疗服务和理想的医疗经济。

相似文献

引用本文的文献

本文引用的文献

1
The burden of critical limb ischemia: a review of recent literature.严重肢体缺血的负担:近期文献综述
Vasc Health Risk Manag. 2019 Jul 1;15:187-208. doi: 10.2147/VHRM.S209241. eCollection 2019.
9
Burden of Readmissions Among Patients With Critical Limb Ischemia.严重肢体缺血患者的再入院负担。
J Am Coll Cardiol. 2017 Apr 18;69(15):1897-1908. doi: 10.1016/j.jacc.2017.02.040. Epub 2017 Mar 6.
10
Contemporary Outcomes of Endovascular Intervention for Critical Limb Ischemia.下肢严重缺血血管内介入治疗的当代疗效
Interv Cardiol Clin. 2017 Apr;6(2):251-259. doi: 10.1016/j.iccl.2016.12.008. Epub 2017 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验