Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Chemphyschem. 2020 May 18;21(10):1070-1078. doi: 10.1002/cphc.201901151. Epub 2020 Apr 9.
Dispersed negatively charged silica nanoparticles segregate inside microfluidic water-in-oil (W/O) droplets that are coated with a positively charged lipid shell. We report a methodology for the quantitative analysis of this self-assembly process. By using real-time fluorescence microscopy and automated analysis of the recorded images, kinetic data are obtained that characterize the electrostatically-driven self-assembly. We demonstrate that the segregation rates can be controlled by the installment of functional moieties on the nanoparticle's surface, such as nucleic acid and protein molecules. We anticipate that our method enables the quantitative and systematic investigation of the segregation of (bio)functionalized nanoparticles in microfluidic droplets. This could lead to complex supramolecular architectures on the inner surface of micrometer-sized hollow spheres, which might be used, for example, as cell containers for applications in the life sciences.
带负电荷的二氧化硅纳米颗粒在带有正电荷脂质外壳的微流控水包油(W/O)液滴内分离。我们报告了一种定量分析这种自组装过程的方法。通过使用实时荧光显微镜和记录图像的自动分析,获得了描述静电驱动自组装的动力学数据。我们证明,通过在纳米颗粒表面安装功能部分,例如核酸和蛋白质分子,可以控制分离速率。我们预计,我们的方法能够定量和系统地研究(生物)功能化纳米颗粒在微流控液滴中的分离。这可能导致在微米级空心球的内表面上形成复杂的超分子结构,例如,可将其用作生命科学应用中的细胞容器。