UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP, UK.
School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ, UK.
Nat Commun. 2020 Mar 6;11(1):1232. doi: 10.1038/s41467-020-15108-z.
Water temperature is critical for the ecology of lakes. However, the ability to predict its spatial and seasonal variation is constrained by the lack of a thermal classification system. Here we define lake thermal regions using objective analysis of seasonal surface temperature dynamics from satellite observations. Nine lake thermal regions are identified that mapped robustly and largely contiguously globally, even for small lakes. The regions differed from other global patterns, and so provide unique information. Using a lake model forced by 21 century climate projections, we found that 12%, 27% and 66% of lakes will change to a lower latitude thermal region by 2080-2099 for low, medium and high greenhouse gas concentration trajectories (Representative Concentration Pathways 2.6, 6.0 and 8.5) respectively. Under the worst-case scenario, a 79% reduction in the number of lakes in the northernmost thermal region is projected. This thermal region framework can facilitate the global scaling of lake-research.
水温对湖泊生态系统至关重要。然而,由于缺乏热分类系统,预测其空间和季节性变化的能力受到限制。在这里,我们使用卫星观测的季节性表面温度动态的客观分析来定义湖泊的热区。确定了九个湖泊热区,这些热区在全球范围内具有很强的稳健性和连续性,即使是对于小湖泊也是如此。这些区域与其他全球模式不同,因此提供了独特的信息。使用受 21 世纪气候预测驱动的湖泊模型,我们发现到 2080-2099 年,对于低、中、高温室气体浓度轨迹(代表性浓度路径 2.6、6.0 和 8.5),分别有 12%、27%和 66%的湖泊将转变为更低纬度的热区。在最坏的情况下,预计最北部热区的湖泊数量将减少 79%。这个热区框架可以促进全球范围内的湖泊研究。