Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU-UNCuyo), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina.
Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Instituto de Biología Agrícola de Mendoza (IBAM), CONICET, Mendoza, Argentina.
Life Sci. 2020 May 15;249:117513. doi: 10.1016/j.lfs.2020.117513. Epub 2020 Mar 5.
According to investigations in phytomedicine and ethnopharmacology, the therapeutic properties of garlic (Allium sativum) have been described by ancestral cultures. Notwithstanding, it is of particular concern to elucidate the molecular mechanisms underlying this millenary empirical knowledge. Allicin (S-allyl prop-2-ene-1-sulfinothioate), a thioester of sulfenic acid, is one of the main bioactive compounds present in garlic, and it is responsible for the particular aroma of the spice. The pharmacological attributes of allicin integrate a broad spectrum of properties (e.g., anti-inflammatory, immunomodulatory, antibiotic, antifungal, antiparasitic, antioxidant, nephroprotective, neuroprotective, cardioprotective, and anti-tumoral activities, among others). The primary goal of the present article is to review and clarify the common molecular mechanisms by which allicin and its derivates molecules may perform its therapeutic effects on cardiovascular diseases and neuroinflammatory processes. The intricate interface connecting the cardiovascular and nervous systems suggests that the impairment of one organ could contribute to the dysfunction of the other. Allicin might target the cornerstone of the pathological processes underlying cardiovascular and neuroinflammatory disorders, like inflammation, renin-angiotensin-aldosterone system (RAAS) hyperactivation, oxidative stress, and mitochondrial dysfunction. Indeed, the current evidence suggests that allicin improves mitochondrial function by enhancing the expression of HSP70 and NRF2, decreasing RAAS activation, and promoting mitochondrial fusion processes. Finally, allicin represents an attractive therapeutic alternative targeting the complex interaction between cardiovascular and neuroinflammatory disorders.
根据植物医学和民族药理学的调查,大蒜(Allium sativum)的治疗特性已被祖先文化所描述。然而,特别需要阐明的是,这种千年经验知识的分子机制。大蒜素(S-烯丙基丙-2-烯-1-亚磺酰硫代酯)是大蒜中主要的生物活性化合物之一,也是香料特殊香气的来源。大蒜素的药理特性整合了广泛的特性(例如,抗炎、免疫调节、抗生素、抗真菌、抗寄生虫、抗氧化、肾保护、神经保护、心脏保护和抗肿瘤活性等)。本文的主要目的是综述并阐明大蒜素及其衍生物分子可能对心血管疾病和神经炎症过程发挥治疗作用的常见分子机制。心血管系统和神经系统之间错综复杂的界面表明,一个器官的损伤可能导致另一个器官的功能障碍。大蒜素可能针对心血管和神经炎症性疾病的病理过程的基石,如炎症、肾素-血管紧张素-醛固酮系统(RAAS)过度激活、氧化应激和线粒体功能障碍。事实上,目前的证据表明,大蒜素通过增强 HSP70 和 NRF2 的表达、降低 RAAS 激活和促进线粒体融合过程来改善线粒体功能。最后,大蒜素代表了一种有吸引力的治疗选择,针对心血管和神经炎症性疾病之间的复杂相互作用。