Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States; Département de pathologie et de microbiologie, Faculté de Médecine vétérinaire-Université de Montréal, Saint-Hyacinthe, Québec, J2S 2M2, Canada; Département de médecine sociale et preventive, École de Santé Publique, Université de Montréal, Montréal, Québec, H3N 1X9, Canada; Centre de Recherche en Santé Publique (CReSP), Université de Montréal, Montréal, Québec, Canada.
Drug Alcohol Depend. 2020 Apr 1;209:107906. doi: 10.1016/j.drugalcdep.2020.107906. Epub 2020 Mar 4.
International Classification of Diseases (ICD) code algorithms are routinely used to estimate the frequency of illicit injection drug use (IDU)-associated hospitalizations in administrative health datasets despite a lack of evidence regarding their validity. We aimed to measure the sensitivity and specificity of ICD code algorithms used to estimate the prevalence of current/recent IDU among infective endocarditis (IE) hospitalizations without a reference standard.
We reviewed medical records of 321 patients aged 18-64 years old from an urban academic hospital with an IE diagnosis between 2007 and 2017. Diagnostic tests for IDU included self-reported IDU in medical records; a drug use, abuse and dependence (UAD) ICD algorithm; a Hepatitis C Virus (HCV) ICD algorithm; and a combination drug UAD/HCV ICD algorithm. Sensitivity, specificity and the misclassification error (ME)-adjusted IDU prevalence were estimated using Bayesian latent class models.
The combination algorithm had the highest sensitivity and lowest specificity. Sensitivity increased for the drug UAD algorithm in the ICD-10 period compared to the ICD-9 period. The ME-adjusted current/recent IDU prevalence estimated using the drug UAD and HCV algorithms was 23 % (95 % Bayesian credible interval: 16 %, 31 %). The unadjusted prevalence estimate from the drug UAD algorithm underestimated the ME-adjusted prevalence, while the combination algorithm overestimated it.
The validity of ICD code algorithms for IDU among IE hospitalizations is imperfect and differs between ICD-9 and ICD-10. Commonly used ICD-based algorithms could lead to substantially biased prevalence estimates in IDU-associated hospitalizations when using administrative health data.
尽管缺乏关于其有效性的证据,但国际疾病分类(ICD)代码算法通常用于估计行政健康数据集中毒品注射使用(IDU)相关住院的频率。我们旨在测量用于估计无参考标准的感染性心内膜炎(IE)住院患者中当前/最近 IDU 患病率的 ICD 代码算法的敏感性和特异性。
我们回顾了 2007 年至 2017 年间一家城市学术医院 321 名年龄在 18-64 岁之间的 IE 诊断患者的病历。IDU 的诊断性检测包括病历中的自我报告 IDU;药物使用、滥用和依赖(UAD)ICD 算法;丙型肝炎病毒(HCV)ICD 算法;以及 UAD/HCV 联合药物 ICD 算法。使用贝叶斯潜在类别模型估计了敏感性、特异性和误分类误差(ME)调整后的 IDU 患病率。
联合算法的敏感性最高,特异性最低。与 ICD-9 时期相比,ICD-10 时期药物 UAD 算法的敏感性增加。使用药物 UAD 和 HCV 算法估计的当前/最近 IDU 患病率为 23%(95%贝叶斯可信区间:16%,31%)。药物 UAD 算法的未调整患病率估计值低估了 ME 调整后的患病率,而联合算法则高估了它。
ICD 代码算法在 IE 住院患者中的 IDU 有效性并不完美,并且在 ICD-9 和 ICD-10 之间存在差异。在使用行政健康数据时,常用的基于 ICD 的算法可能导致与 IDU 相关的住院患者中存在严重偏差的患病率估计。