Suppr超能文献

在缺乏参考标准的情况下,基于 ICD 的算法估计感染性心内膜炎住院患者注射毒品使用流行率的有效性。

Validity of ICD-based algorithms to estimate the prevalence of injection drug use among infective endocarditis hospitalizations in the absence of a reference standard.

机构信息

Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.

Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States; Département de pathologie et de microbiologie, Faculté de Médecine vétérinaire-Université de Montréal, Saint-Hyacinthe, Québec, J2S 2M2, Canada; Département de médecine sociale et preventive, École de Santé Publique, Université de Montréal, Montréal, Québec, H3N 1X9, Canada; Centre de Recherche en Santé Publique (CReSP), Université de Montréal, Montréal, Québec, Canada.

出版信息

Drug Alcohol Depend. 2020 Apr 1;209:107906. doi: 10.1016/j.drugalcdep.2020.107906. Epub 2020 Mar 4.

Abstract

BACKGROUND

International Classification of Diseases (ICD) code algorithms are routinely used to estimate the frequency of illicit injection drug use (IDU)-associated hospitalizations in administrative health datasets despite a lack of evidence regarding their validity. We aimed to measure the sensitivity and specificity of ICD code algorithms used to estimate the prevalence of current/recent IDU among infective endocarditis (IE) hospitalizations without a reference standard.

METHODS

We reviewed medical records of 321 patients aged 18-64 years old from an urban academic hospital with an IE diagnosis between 2007 and 2017. Diagnostic tests for IDU included self-reported IDU in medical records; a drug use, abuse and dependence (UAD) ICD algorithm; a Hepatitis C Virus (HCV) ICD algorithm; and a combination drug UAD/HCV ICD algorithm. Sensitivity, specificity and the misclassification error (ME)-adjusted IDU prevalence were estimated using Bayesian latent class models.

RESULTS

The combination algorithm had the highest sensitivity and lowest specificity. Sensitivity increased for the drug UAD algorithm in the ICD-10 period compared to the ICD-9 period. The ME-adjusted current/recent IDU prevalence estimated using the drug UAD and HCV algorithms was 23 % (95 % Bayesian credible interval: 16 %, 31 %). The unadjusted prevalence estimate from the drug UAD algorithm underestimated the ME-adjusted prevalence, while the combination algorithm overestimated it.

CONCLUSION

The validity of ICD code algorithms for IDU among IE hospitalizations is imperfect and differs between ICD-9 and ICD-10. Commonly used ICD-based algorithms could lead to substantially biased prevalence estimates in IDU-associated hospitalizations when using administrative health data.

摘要

背景

尽管缺乏关于其有效性的证据,但国际疾病分类(ICD)代码算法通常用于估计行政健康数据集中毒品注射使用(IDU)相关住院的频率。我们旨在测量用于估计无参考标准的感染性心内膜炎(IE)住院患者中当前/最近 IDU 患病率的 ICD 代码算法的敏感性和特异性。

方法

我们回顾了 2007 年至 2017 年间一家城市学术医院 321 名年龄在 18-64 岁之间的 IE 诊断患者的病历。IDU 的诊断性检测包括病历中的自我报告 IDU;药物使用、滥用和依赖(UAD)ICD 算法;丙型肝炎病毒(HCV)ICD 算法;以及 UAD/HCV 联合药物 ICD 算法。使用贝叶斯潜在类别模型估计了敏感性、特异性和误分类误差(ME)调整后的 IDU 患病率。

结果

联合算法的敏感性最高,特异性最低。与 ICD-9 时期相比,ICD-10 时期药物 UAD 算法的敏感性增加。使用药物 UAD 和 HCV 算法估计的当前/最近 IDU 患病率为 23%(95%贝叶斯可信区间:16%,31%)。药物 UAD 算法的未调整患病率估计值低估了 ME 调整后的患病率,而联合算法则高估了它。

结论

ICD 代码算法在 IE 住院患者中的 IDU 有效性并不完美,并且在 ICD-9 和 ICD-10 之间存在差异。在使用行政健康数据时,常用的基于 ICD 的算法可能导致与 IDU 相关的住院患者中存在严重偏差的患病率估计。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验