Suppr超能文献

揭开超细微气泡之谜:亚微米气泡的热力学平衡建立及其意义。

Unraveling the mystery of ultrafine bubbles: Establishment of thermodynamic equilibrium for sub-micron bubbles and its implications.

机构信息

Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Republic of Korea; Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, United States(1).

Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Republic of Korea.

出版信息

J Colloid Interface Sci. 2020 Jun 15;570:173-181. doi: 10.1016/j.jcis.2020.02.101. Epub 2020 Feb 26.

Abstract

HYPOTHESIS

We test the validity of the Young-Laplace equation and Henry's law for sub-micron bubble suspensions, which has long been a questionable issue. Application of the two theories allows characterization of bubble diameter and gas molecule partitioning between gaseous and dissolved phases using two easily measurable variables: total gas content (C) and bubble volume concentration (BVC).

EXPERIMENTS

We measure C and BVC for sub-micron bubble suspensions generated from three pure gases, which allows calculation of bubble diameter for each suspension using the Young-Laplace equation and Henry's law. Uncertainties involved in the experimental measurements are assessed. Bubble size for each suspension is also directly measured using a dynamic light scattering (DLS) technique for comparison.

FINDINGS

Applying the two theories we calculate that the bubble diameters are in the range of 304-518 nm, which correspond very well with the DLS-measured diameters. Sensitivity analyses demonstrate that the correspondence of the calculated and DLS-measured bubble diameters should take place only if the two theories are valid. The gas molecule partitioning analysis shows that >96% of gas molecules in the suspension exist as dissolved phase, which suggests the significance of the dissolved phase for applications of the bubble suspensions.

摘要

假设

我们检验亚微米气泡悬浮液的 Young-Laplace 方程和 Henry 定律的有效性,长期以来这一直是一个有争议的问题。这两个理论的应用可以通过两个易于测量的变量来描述气泡直径和气相与溶解相间的气体分子分配:总气体含量 (C) 和气泡体积浓度 (BVC)。

实验

我们测量了三种纯气体产生的亚微米气泡悬浮液的 C 和 BVC,这允许使用 Young-Laplace 方程和 Henry 定律为每个悬浮液计算气泡直径。评估了实验测量中涉及的不确定度。还使用动态光散射 (DLS) 技术直接测量每个悬浮液的气泡大小进行比较。

结果

应用这两个理论,我们计算出气泡直径在 304-518nm 范围内,与 DLS 测量的直径非常吻合。敏感性分析表明,只有在这两个理论有效的情况下,计算出的和 DLS 测量的气泡直径才会相符。气体分子分配分析表明,悬浮液中超过 96%的气体分子以溶解相存在,这表明溶解相在气泡悬浮液的应用中具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验