Zhang Quan-You, Bai Jia-Dong, Wu Xiao-An, Liu Xiao-Na, Zhang Min, Chen Wei-Yi
College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Department of Orthopaedics, the Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, China.
College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
J Biomech. 2020 May 7;104:109729. doi: 10.1016/j.jbiomech.2020.109729. Epub 2020 Feb 29.
In articular cartilage, the function of chondrocytes is strongly related to their zone-specific microniche geometry defined by pericellular matrix. Microniche geometry is critical for regulating the phenotype and function of the chondrocyte in native cartilage and tissue engineering constructs. However the role of microniche geometry in the mechanical properties and calcium signaling of chondrocytes remains unknown. To recapitulate microniche geometry at single-cell level, we engineered three basic physiological-related polydimethylsiloxane (PDMS) microniches geometries fabricated using soft lithography. We cultured chondrocytes in these microniche geometries and quantified cell mechanical properties using atomic force microscopy (AFM). Fluorescent calcium indicator was used to record and quantify cytosolic Ca oscillation of chondrocytes in different geometries. Our work showed that microniche geometry modulated the mechanical behavior and calcium signaling of chondrocytes. The ellipsoidal microniches significantly enhanced the mechanical properties of chondrocytes compared to spheroidal microniche. Additionally, ellipsoidal microniches can markedly improved the amplitude but weakened the frequency of cytosolic Ca oscillation in chondrocytes than spheroidal microniche. Our work might reveal a novel understanding of chondrocyte mechanotransduction and therefore be useful for designing cell-instructive scaffolds for functional cartilage tissue engineering.
在关节软骨中,软骨细胞的功能与其由细胞周围基质定义的区域特异性微环境几何形状密切相关。微环境几何形状对于调节天然软骨和组织工程构建物中软骨细胞的表型和功能至关重要。然而,微环境几何形状在软骨细胞的力学性能和钙信号传导中的作用仍然未知。为了在单细胞水平上重现微环境几何形状,我们设计了三种使用软光刻技术制造的与基本生理相关的聚二甲基硅氧烷(PDMS)微环境几何形状。我们将软骨细胞培养在这些微环境几何形状中,并使用原子力显微镜(AFM)量化细胞的力学性能。荧光钙指示剂用于记录和量化不同几何形状中软骨细胞的胞质钙振荡。我们的研究表明,微环境几何形状调节了软骨细胞的力学行为和钙信号传导。与球形微环境相比,椭圆形微环境显著增强了软骨细胞的力学性能。此外,与球形微环境相比,椭圆形微环境可以显著提高软骨细胞胞质钙振荡的幅度,但降低其频率。我们的研究可能揭示了对软骨细胞机械转导的新理解,因此对于设计用于功能性软骨组织工程的细胞指导性支架可能有用。