Chowdhury Sayema, Roy Anupam, Bodemann Isaac, Banerjee Sanjay K
Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States.
ACS Appl Mater Interfaces. 2020 Apr 1;12(13):15885-15892. doi: 10.1021/acsami.9b23286. Epub 2020 Mar 23.
We investigate the role of growth temperature and metal/chalcogen flux in atmospheric pressure chemical vapor deposition growth of MoSe and WSe on Si/SiO substrates. Using scanning electron microscopy and atomic force microscopy, we observe that the growth temperature and transition metal flux strongly influence the domain morphology, and the compact triangular or hexagonal domains ramify into branched structures as the growth temperature (metal flux) is decreased (increased). The competition between adatom attachment to the domain edges and diffusion of adatoms along the domain boundary determines the evolution of the observed growth morphology. Depending on the growth temperature and flux, two different branched structures-fractals and dendrites-grow. The fractals (with a dimension of ∼1.67) obey a diffusion-limited aggregation mechanism, whereas the dendrites with a higher fractal dimension of ∼1.80 exhibit preferential growth along the symmetry-governed directions. The effect of chalcogen environment is studied, where a Se-rich condition helps restrict Mo-rich nucleus formation, promoting lateral growth. For a Se-deficient environment, several multilayer islands cluster on two-dimensional domains, suggesting a transition from lateral to vertical growth because of insufficient Se passivation. X-ray photoelectron spectroscopy analysis shows a near perfect stoichiometry (Mo/Se = 1:1.98) of MoSe grown in a Se-rich environment, whereas in the Se-deficient condition, a ratio of Mo/Se = 1:1.68 is observed. This also supports the formation of metal-rich nuclei (MoSe) under Se-deficient conditions, leading to three-dimensional clustering. Tuning the growth temperature and metal/chalcogen flux, we propose an optimized CVD growth window for synthesizing large-area Mo(W) selenide.
我们研究了生长温度和金属/硫族元素通量在硅/二氧化硅衬底上常压化学气相沉积生长钼硒化物和钨硒化物过程中的作用。通过扫描电子显微镜和原子力显微镜,我们观察到生长温度和过渡金属通量强烈影响畴形态,并且随着生长温度(金属通量)降低(增加),紧凑的三角形或六边形畴会分支成枝状结构。吸附原子附着到畴边缘与吸附原子沿畴边界扩散之间的竞争决定了所观察到的生长形态的演变。根据生长温度和通量,会生长出两种不同的分支结构——分形和枝晶。分形(维度约为1.67)遵循扩散限制聚集机制,而分形维度约为1.80的枝晶则沿对称控制方向优先生长。研究了硫族元素环境的影响,其中富硒条件有助于限制富钼核的形成,促进横向生长。对于缺硒环境,几个多层岛聚集在二维畴上,这表明由于硒钝化不足,生长从横向转变为纵向。X射线光电子能谱分析表明,在富硒环境中生长的钼硒化物具有接近完美的化学计量比(钼/硒 = 1:1.98),而在缺硒条件下,观察到钼/硒的比例为1:1.68。这也支持了在缺硒条件下形成富金属核(钼硒化物),导致三维聚集。通过调整生长温度和金属/硫族元素通量,我们提出了一个用于合成大面积钼(钨)硒化物的优化化学气相沉积生长窗口。