Xing Jie, Li Zheren, Wang Biyuan, Qi Yuji, Yu Bingbin, Zanjani Farhad Ghazvinian, Zheng Aiwen, Duits Remco, Tan Tao
IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2555-2565. doi: 10.1109/TCBB.2020.2978470. Epub 2021 Dec 8.
Breast cancer is the most common invasive cancer with the highest cancer occurrence in females. Handheld ultrasound is one of the most efficient ways to identify and diagnose the breast cancer. The area and the shape information of a lesion is very helpful for clinicians to make diagnostic decisions. In this study we propose a new deep-learning scheme, semi-pixel-wise cycle generative adversarial net (SPCGAN) for segmenting the lesion in 2D ultrasound. The method takes the advantage of a fully convolutional neural network (FCN) and a generative adversarial net to segment a lesion by using prior knowledge. We compared the proposed method to a fully connected neural network and the level set segmentation method on a test dataset consisting of 32 malignant lesions and 109 benign lesions. Our proposed method achieved a Dice similarity coefficient (DSC) of 0.92 while FCN and the level set achieved 0.90 and 0.79 respectively. Particularly, for malignant lesions, our method increases the DSC (0.90) of the fully connected neural network to 0.93 significantly (p 0.001). The results show that our SPCGAN can obtain robust segmentation results. The framework of SPCGAN is particularly effective when sufficient training samples are not available compared to FCN. Our proposed method may be used to relieve the radiologists' burden for annotation.
乳腺癌是女性中最常见的浸润性癌症,其发病率最高。手持超声是识别和诊断乳腺癌最有效的方法之一。病变的面积和形状信息对临床医生做出诊断决策非常有帮助。在本研究中,我们提出了一种新的深度学习方案,即半像素级循环生成对抗网络(SPCGAN),用于在二维超声中分割病变。该方法利用全卷积神经网络(FCN)和生成对抗网络的优势,通过使用先验知识来分割病变。我们将所提出的方法与全连接神经网络和水平集分割方法在一个由32个恶性病变和109个良性病变组成的测试数据集上进行了比较。我们提出的方法获得的骰子相似系数(DSC)为0.92,而FCN和水平集方法分别为0.90和0.79。特别是对于恶性病变,我们的方法将全连接神经网络的DSC(0.90)显著提高到了0.93(p<0.001)。结果表明,我们的SPCGAN可以获得稳健的分割结果。与FCN相比,当没有足够的训练样本时,SPCGAN框架特别有效。我们提出的方法可用于减轻放射科医生的标注负担。