Suppr超能文献

基于聚偏氟乙烯薄膜传感器的无约束睡眠分期的长短时记忆网络

Long Short-Term Memory Networks for Unconstrained Sleep Stage Classification Using Polyvinylidene Fluoride Film Sensor.

出版信息

IEEE J Biomed Health Inform. 2020 Dec;24(12):3606-3615. doi: 10.1109/JBHI.2020.2979168. Epub 2020 Dec 4.

Abstract

Sleep stage scoring is the first step towards quantitative analysis of sleep using polysomnography (PSG) recordings. However, although PSG is a gold standard method for assessing sleep, it is obtrusive and difficult to apply for long-term sleep monitoring. Further, because human experts manually classify sleep stages, it is time-consuming and exhibits inter-rater variability. Therefore, this article proposes a long short-term memory (LSTM) model for automatic sleep stage scoring using a polyvinylidene fluoride (PVDF) film sensor that can provide unconstrained long-term physiological monitoring. Signals were recorded using a PVDF sensor during PSG. From 60 recordings, 30 were used for training, 10 for validation, and 20 for testing. Sixteen parameters, including movement, respiration-related, and heart rate variability, were extracted from the recorded signals and then normalized. From the selected LSTM architecture, four sleep stage classification performances were evaluated for a test dataset and the results were compared with those of conventional machine learning methods. According to epoch-by-epoch (30 s) analysis, the classification performance for the four sleep stages had an average accuracy of 73.9% and a Cohen's kappa coefficient of 0.55. When compared with other machine learning methods, the proposed method achieved the highest classification performance. The use of LSTM networks with the PVDF film sensor has potential for facilitating automatic sleep scoring, and it can be applied for long-term sleep monitoring at home.

摘要

睡眠阶段评分是使用多导睡眠图 (PSG) 记录对睡眠进行定量分析的第一步。然而,尽管 PSG 是评估睡眠的金标准方法,但它具有侵入性,难以进行长期睡眠监测。此外,由于人类专家手动对睡眠阶段进行分类,因此既费时又存在评分者间的变异性。因此,本文提出了一种使用聚偏二氟乙烯 (PVDF) 薄膜传感器的长短期记忆 (LSTM) 模型,用于自动睡眠阶段评分,该传感器可提供无约束的长期生理监测。使用 PVDF 传感器在 PSG 期间记录信号。从 60 次记录中,使用 30 次用于训练,10 次用于验证,20 次用于测试。从记录的信号中提取了 16 个参数,包括运动、呼吸相关和心率变异性,并对其进行了归一化处理。从所选的 LSTM 架构中,评估了针对测试数据集的四种睡眠阶段分类性能,并将结果与传统机器学习方法进行了比较。根据逐epoch(30 秒)分析,四种睡眠阶段的分类性能平均准确率为 73.9%,Cohen's kappa 系数为 0.55。与其他机器学习方法相比,所提出的方法实现了最高的分类性能。使用 LSTM 网络和 PVDF 薄膜传感器具有促进自动睡眠评分的潜力,并且可以在家中进行长期睡眠监测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验