Wan Qingyun, Bo Yuyang, Zhang Ying, Li Mufeng, Wang Xiaoqiu, Chen Chuang, Liu Lanying, Wu Wenzhong
Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China.
College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China.
iScience. 2025 Jul 22;28(8):113169. doi: 10.1016/j.isci.2025.113169. eCollection 2025 Aug 15.
Sleep staging is essential for evaluating sleep quality, diagnosing disorders, and creating personalized treatment plans. The convolutional and bidirectional long short-term memory hybrid neural network (CNN-BiLSTM) has shown promise in automated sleep staging from electroencephalogram (EEG) signals. However, prior studies often overlook expert-derived manual features, relying solely on deep neural networks for automatic feature extraction. This study proposes an automated sleep staging model (named MA-CNN-BiLSTM) for single-channel EEG using a CNN-BiLSTM network with embedded manual features and attention mechanisms. The model computes multidimensional features such as signal energy and entropy via wavelet decomposition and integrates attention mechanisms to enable the network to focus on crucial features for classification. Sleep stage classification is achieved using a SoftMax layer. The proposed MA-CNN-BiLSTM model is validated on the Sleep-EDF-20 and SVUH-UCD datasets, demonstrating superior classification accuracy, macro-averaged F1 scores, and Cohen's Kappa, outperforming other models.
睡眠分期对于评估睡眠质量、诊断疾病以及制定个性化治疗方案至关重要。卷积双向长短期记忆混合神经网络(CNN-BiLSTM)在基于脑电图(EEG)信号的自动睡眠分期中显示出了潜力。然而,先前的研究往往忽视了专家得出的手工特征,仅依靠深度神经网络进行自动特征提取。本研究提出了一种用于单通道EEG的自动睡眠分期模型(名为MA-CNN-BiLSTM),该模型使用具有嵌入式手工特征和注意力机制的CNN-BiLSTM网络。该模型通过小波分解计算信号能量和熵等多维特征,并集成注意力机制以使网络能够专注于分类的关键特征。使用SoftMax层实现睡眠阶段分类。所提出的MA-CNN-BiLSTM模型在Sleep-EDF-20和SVUH-UCD数据集上得到验证,展现出卓越的分类准确率、宏平均F1分数和科恩卡帕系数,优于其他模型。