Suppr超能文献

从功能连接测量估计 Fugl-Meyer 上肢运动评分。

Estimating Fugl-Meyer Upper Extremity Motor Score From Functional-Connectivity Measures.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2020 Apr;28(4):860-868. doi: 10.1109/TNSRE.2020.2978381. Epub 2020 Mar 5.

Abstract

Fugl-Meyer assessment is an accepted method of evaluating motor function for people with stroke. A challenge associated with this assessment is the availability of trained examiners to carry out the evaluation. Neurophysiological biomarkers show promise in addressing the above impediment. Our study investigated the potential of using resting state electroencephalographic (EEG) functional connectivity measures as biomarkers for estimating Fugl-Meyer upper extremity motor score (FMU) in people with chronic stroke. Resting state EEG was recorded from 10 individuals with stroke. Functional connectivity was evaluated through five different processing algorithms and quantified in terms of maximum-coherence between EEG electrodes at 15 frequencies from 1 to 45 Hz. We applied a multi-variate Partial Least Squares (PLS) Correlation analysis to simultaneously identify specific connectivity channels (EEG electrode pairings) and frequencies that robustly correlated with FMU. We then applied PLS-Regression to the identified channels and frequencies to generate a set of coefficients for estimating the FMU. Participants were randomly assigned to a training-set of eight and a test-set of two. Cross-validation with leave-one-out approach on the training-set, using Phase-Lag-Index processing algorithm, resulted in an R of 0.97 and a least-square linear fit slope of 1 for predicted versus actual FMU, with a root-mean-square error of 1.9 on FMU scale. Application of regression coefficients to the connectivity measures from the test-set resulted in predicted FMU of 47 and 38 versus actual scores of 46 and 39, respectively. Our results demonstrated that the evaluation of neural correlates of FMU shows promise in addressing the challenges associated with the availability of trained examiners to carry out the assessments.

摘要

Fugl-Meyer 评估是评估中风患者运动功能的一种公认方法。该评估方法面临的一个挑战是缺乏受过训练的检查人员来进行评估。神经生理生物标志物在解决上述障碍方面显示出了潜力。我们的研究调查了使用静息态脑电图(EEG)功能连接测量作为生物标志物来估计慢性中风患者 Fugl-Meyer 上肢运动评分(FMU)的潜力。从 10 名中风患者中记录静息态 EEG。通过五种不同的处理算法评估功能连接,并以 1 到 45 Hz 之间 15 个频率的 EEG 电极之间的最大相干性来量化。我们应用多变量偏最小二乘(PLS)相关分析来同时识别与 FMU 强相关的特定连接通道(EEG 电极对)和频率。然后,我们将 PLS-Regression 应用于所识别的通道和频率,以生成一组用于估计 FMU 的系数。参与者被随机分配到训练集的 8 个和测试集的 2 个。使用相位滞后指数处理算法对训练集进行的留一法交叉验证,得到的 R 为 0.97,预测与实际 FMU 的最小二乘线性拟合斜率为 1,FMU 量表上的均方根误差为 1.9。将回归系数应用于测试集的连接测量值,得到预测的 FMU 为 47 和 38,而实际得分分别为 46 和 39。我们的研究结果表明,FMU 神经相关性的评估在解决与评估相关的训练有素的检查人员可用性方面具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验