文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Connectomics underlying motor functional outcomes in the acute period following stroke.

作者信息

Bian Rong, Huo Ming, Liu Wan, Mansouri Negar, Tanglay Onur, Young Isabella, Osipowicz Karol, Hu Xiaorong, Zhang Xia, Doyen Stephane, Sughrue Michael E, Liu Li

机构信息

Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.

University of Health and Rehabilitation Sciences, Qingdao, China.

出版信息

Front Aging Neurosci. 2023 Feb 15;15:1131415. doi: 10.3389/fnagi.2023.1131415. eCollection 2023.


DOI:10.3389/fnagi.2023.1131415
PMID:36875697
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9975347/
Abstract

OBJECTIVE: Stroke remains the number one cause of morbidity in many developing countries, and while effective neurorehabilitation strategies exist, it remains difficult to predict the individual trajectories of patients in the acute period, making personalized therapies difficult. Sophisticated and data-driven methods are necessary to identify markers of functional outcomes. METHODS: Baseline anatomical T1 magnetic resonance imaging (MRI), resting-state functional MRI (rsfMRI), and diffusion weighted scans were obtained from 79 patients following stroke. Sixteen models were constructed to predict performance across six tests of motor impairment, spasticity, and activities of daily living, using either whole-brain structural or functional connectivity. Feature importance analysis was also performed to identify brain regions and networks associated with performance in each test. RESULTS: The area under the receiver operating characteristic curve ranged from 0.650 to 0.868. Models utilizing functional connectivity tended to have better performance than those utilizing structural connectivity. The Dorsal and Ventral Attention Networks were among the top three features in several structural and functional models, while the Language and Accessory Language Networks were most commonly implicated in structural models. CONCLUSIONS: Our study highlights the potential of machine learning methods combined with connectivity analysis in predicting outcomes in neurorehabilitation and disentangling the neural correlates of functional impairments, though further longitudinal studies are necessary.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f8/9975347/726e04102376/fnagi-15-1131415-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f8/9975347/507493f78217/fnagi-15-1131415-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f8/9975347/53b4c796112b/fnagi-15-1131415-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f8/9975347/e8afbf32d5b8/fnagi-15-1131415-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f8/9975347/e73f0501701d/fnagi-15-1131415-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f8/9975347/87be6433439f/fnagi-15-1131415-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f8/9975347/49322e160336/fnagi-15-1131415-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f8/9975347/910672ec4b78/fnagi-15-1131415-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f8/9975347/726e04102376/fnagi-15-1131415-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f8/9975347/507493f78217/fnagi-15-1131415-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f8/9975347/53b4c796112b/fnagi-15-1131415-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f8/9975347/e8afbf32d5b8/fnagi-15-1131415-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f8/9975347/e73f0501701d/fnagi-15-1131415-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f8/9975347/87be6433439f/fnagi-15-1131415-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f8/9975347/49322e160336/fnagi-15-1131415-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f8/9975347/910672ec4b78/fnagi-15-1131415-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f8/9975347/726e04102376/fnagi-15-1131415-g0008.jpg

相似文献

[1]
Connectomics underlying motor functional outcomes in the acute period following stroke.

Front Aging Neurosci. 2023-2-15

[2]
Structurofunctional resting-state networks correlate with motor function in chronic stroke.

Neuroimage Clin. 2017-7-29

[3]
Machine Learning Decomposition of the Anatomy of Neuropsychological Deficit in Alzheimer's Disease and Mild Cognitive Impairment.

Front Aging Neurosci. 2022-5-3

[4]
Functional connectivity of the language area in migraine: a preliminary classification model.

BMC Neurol. 2023-4-4

[5]
Use of machine learning to identify functional connectivity changes in a clinical cohort of patients at risk for dementia.

Front Aging Neurosci. 2022-9-1

[6]
Ventral attention and motor network connectivity is relevant to functional impairment in spatial neglect after right brain stroke.

Brain Cogn. 2019-2

[7]
Connectomic insight into unique stroke patient recovery after rTMS treatment.

Front Neurol. 2023-7-6

[8]
Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model.

Neuroimage. 2020-7-15

[9]
Early Findings on Functional Connectivity Correlates of Behavioral Outcomes of Brain-Computer Interface Stroke Rehabilitation Using Machine Learning.

Front Neurosci. 2018-9-11

[10]
Connectomic disturbances underlying insomnia disorder and predictors of treatment response.

Front Hum Neurosci. 2022-8-10

引用本文的文献

[1]
Acute Stroke Severity Assessment: The Impact of Lesion Size and Functional Connectivity.

Brain Sci. 2025-7-9

[2]
Predicting upper limb motor recovery in subacute stroke patients via fNIRS-measured cerebral functional responses induced by robotic training.

J Neuroeng Rehabil. 2024-12-23

[3]
Translational Connectomics: overview of machine learning in macroscale Connectomics for clinical insights.

BMC Neurol. 2024-9-28

本文引用的文献

[1]
Machine learning predicts clinically significant health related quality of life improvement after sensorimotor rehabilitation interventions in chronic stroke.

Sci Rep. 2022-7-4

[2]
Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: a systematic review.

J Neuroeng Rehabil. 2022-6-3

[3]
Practical Machine Learning Model to Predict the Recovery of Motor Function in Patients with Stroke.

Eur Neurol. 2022

[4]
Predicting Ischemic Stroke Outcome Using Deep Learning Approaches.

Front Genet. 2022-1-24

[5]
No evidence for motor-recovery-related cortical connectivity changes after stroke using resting-state fMRI.

J Neurophysiol. 2022-3-1

[6]
Changes in the Brain Connectome Following Repetitive Transcranial Magnetic Stimulation for Stroke Rehabilitation.

Cureus. 2021-10-28

[7]
Connectivity-based parcellation of normal and anatomically distorted human cerebral cortex.

Hum Brain Mapp. 2022-3

[8]
Functional connectome reorganization relates to post-stroke motor recovery and structural and functional disconnection.

Neuroimage. 2021-12-15

[9]
Hippocampal and striatal responses during motor learning are modulated by prefrontal cortex stimulation.

Neuroimage. 2021-8-15

[10]
Task-related brain functional network reconfigurations relate to motor recovery in chronic subcortical stroke.

Sci Rep. 2021-4-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索