Suppr超能文献

基于时空诊断语义的增强超声对非典型肝细胞癌的鉴别诊断。

Differential Diagnosis of Atypical Hepatocellular Carcinoma in Contrast-Enhanced Ultrasound Using Spatio-Temporal Diagnostic Semantics.

出版信息

IEEE J Biomed Health Inform. 2020 Oct;24(10):2860-2869. doi: 10.1109/JBHI.2020.2977937. Epub 2020 Mar 3.

Abstract

Atypical Hepatocellular Carcinoma (HCC) is very hard to distinguish from Focal Nodular Hyperplasia (FNH) in routine imaging. However little attention was paid to this problem. This paper proposes a novel liver tumor Computer-Aided Diagnostic (CAD) approach extracting spatio-temporal semantics for atypical HCC. With respect to useful diagnostic semantics, our model automatically calculates three types of semantic feature with equally down-sampled frames based on Contrast-Enhanced Ultrasound (CEUS). Thereafter, a Support Vector Machine (SVM) classifier is trained to make the final diagnosis. Compared with traditional methods for diagnosing HCC, the proposed model has the advantage of less computational complexity and being able to handle the atypical HCC cases. The experimental results show that our method obtained a pretty considerable performance and outperformed two traditional methods. According to the results, the average accuracy reaches 94.40%, recall rate 94.76%, F1-score value 94.62%, specificity 93.62% and sensitivity 94.76%, indicating good merit for automatically diagnosing atypical HCC cases.

摘要

非典型肝细胞肝癌(HCC)在常规影像学检查中很难与局灶性结节性增生(FNH)区分。然而,人们对这个问题关注甚少。本文提出了一种新的肝脏肿瘤计算机辅助诊断(CAD)方法,用于提取非典型 HCC 的时空语义。对于有用的诊断语义,我们的模型基于对比增强超声(CEUS)自动计算三种基于等间隔下采样的帧的语义特征。然后,训练支持向量机(SVM)分类器进行最终诊断。与用于诊断 HCC 的传统方法相比,所提出的模型具有计算复杂度低的优点,并且能够处理非典型 HCC 病例。实验结果表明,我们的方法取得了相当可观的性能,优于两种传统方法。根据结果,平均准确率达到 94.40%,召回率 94.76%,F1 分数值 94.62%,特异性 93.62%和敏感性 94.76%,表明对自动诊断非典型 HCC 病例具有良好的效果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验