Suppr超能文献

随机干扰会改变生态系统变化和恢复的模式。

Stochastic disturbance regimes alter patterns of ecosystem variability and recovery.

机构信息

Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, United States of America.

Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana, Illinois, United States of America.

出版信息

PLoS One. 2020 Mar 9;15(3):e0229927. doi: 10.1371/journal.pone.0229927. eCollection 2020.

Abstract

Altered ecosystem variability is an important ecological response to disturbance yet understanding of how various attributes of disturbance regimes affect ecosystem variability is limited. To improve the framework for understanding the disturbance regime attributes that affect ecosystem variability, we examine how the introduction of stochasticity to disturbance parameters (frequency, severity and extent) alters simulated recovery when compared to deterministic outcomes from a spatially explicit simulation model. We also examine the agreement between results from empirical studies and deterministic and stochastic configurations of the model. We find that stochasticity in disturbance frequency and spatial extent leads to the greatest increase in the variance of simulated dynamics, although stochastic severity also contributes to departures from the deterministic case. The incorporation of stochasticity in disturbance attributes improves agreement between empirical and simulated responses, with 71% of empirical responses correctly classified by stochastic configurations of the model as compared to 47% using the purely deterministic model. By comparison, only 2% of empirical responses were correctly classified by the deterministic model and misclassified by stochastic configurations of the model. These results indicate that stochasticity in the attributes of a disturbance regime alters the patterns and classification of ecosystem variability, suggesting altered recovery dynamics. Incorporating stochastic disturbance processes into models may thus be critical for anticipating the ecological resilience of ecosystems.

摘要

生态系统变异性的改变是对干扰的重要生态响应,但人们对干扰机制的各种属性如何影响生态系统变异性的理解有限。为了改进理解影响生态系统变异性的干扰机制属性的框架,我们研究了当将随机性引入干扰参数(频率、严重程度和范围)时,与空间明确模拟模型的确定性结果相比,模拟恢复会发生怎样的变化。我们还研究了经验研究结果与模型的确定性和随机性配置之间的一致性。我们发现,干扰频率和空间范围的随机性导致模拟动态方差的最大增加,尽管严重程度的随机性也会导致与确定性情况的偏离。在干扰属性中加入随机性可以提高经验和模拟响应之间的一致性,与使用纯确定性模型相比,模型的随机配置可以正确分类 71%的经验响应,而只有 47%。相比之下,确定性模型正确分类了 2%的经验响应,而随机配置模型则错误分类了这些响应。这些结果表明,干扰机制属性的随机性改变了生态系统变异性的模式和分类,表明恢复动态发生了改变。因此,将随机干扰过程纳入模型对于预测生态系统的生态弹性可能至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b778/7062255/20c9bd764b48/pone.0229927.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验