Suppr超能文献

时空干扰特征决定了模拟微生物生态系统的功能稳定性和崩溃风险。

Spatiotemporal disturbance characteristics determine functional stability and collapse risk of simulated microbial ecosystems.

机构信息

UFZ - Helmholtz Centre for Environmental Research, Department of Ecological Modelling, Permoserstraße 15, 04318, Leipzig, Germany.

UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstraße 15, 04318, Leipzig, Germany.

出版信息

Sci Rep. 2018 Jun 22;8(1):9488. doi: 10.1038/s41598-018-27785-4.

Abstract

Terrestrial microbial ecosystems are exposed to many types of disturbances varying in their spatial and temporal characteristics. The ability to cope with these disturbances is crucial for maintaining microbial ecosystem functions, especially if disturbances recur regularly. Thus, understanding microbial ecosystem dynamics under recurrent disturbances and identifying drivers of functional stability and thresholds for functional collapse is important. Using a spatially explicit ecological model of bacterial growth, dispersal, and substrate consumption, we simulated spatially heterogeneous recurrent disturbances and investigated the dynamic response of pollutant biodegradation - exemplarily for an important ecosystem function. We found that thresholds for functional collapse are controlled by the combination of disturbance frequency and spatial configuration (spatiotemporal disturbance regime). For rare disturbances, the occurrence of functional collapse is promoted by low spatial disturbance fragmentation. For frequent disturbances, functional collapse is almost inevitable. Moreover, the relevance of bacterial growth and dispersal for functional stability also depends on the spatiotemporal disturbance regime. Under disturbance regimes with moderate severity, microbial properties can strongly affect functional stability and shift the threshold for functional collapse. Similarly, networks facilitating bacterial dispersal can delay functional collapse. Consequently, measures to enhance or sustain bacterial growth/dispersal are promising strategies to prevent functional collapses under moderate disturbance regimes.

摘要

陆地微生物生态系统会受到多种时空特征各异的干扰。应对这些干扰的能力对于维持微生物生态系统功能至关重要,尤其是在干扰经常发生的情况下。因此,了解反复出现的干扰下微生物生态系统的动态变化,并确定功能稳定性的驱动因素和功能崩溃的阈值非常重要。我们使用细菌生长、扩散和基质消耗的空间显式生态模型模拟了空间异质的反复干扰,并调查了污染物生物降解的动态响应——这是一个重要的生态系统功能的示例。我们发现,功能崩溃的阈值由干扰频率和空间配置(时空干扰格局)共同控制。对于罕见的干扰,功能崩溃的发生受到低空间干扰碎片化的促进。对于频繁的干扰,功能崩溃几乎是不可避免的。此外,细菌生长和扩散对功能稳定性的相关性也取决于时空干扰格局。在中等严重程度的干扰格局下,微生物特性会强烈影响功能稳定性并改变功能崩溃的阈值。同样,促进细菌扩散的网络也可以延迟功能崩溃。因此,增强或维持细菌生长/扩散的措施是防止中等干扰格局下功能崩溃的有前途的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3393/6015006/93b7eea39a08/41598_2018_27785_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验