Ortiz de Zárate David, García-Meca Carlos, Pinilla-Cienfuegos Elena, Ayúcar José A, Griol Amadeu, Bellières Laurent, Hontañón Esther, Kruis Frank E, Martí Javier
Valencia Nanophotonics Technology Center, Universitat Politècnica de València, 46022 València, Spain.
Grupo de Nanosensores y Sistemas Inteligentes (NoySI), CSIC, 28006 Madrid, Spain.
Nanomaterials (Basel). 2020 Mar 5;10(3):466. doi: 10.3390/nano10030466.
Nanomaterials with very specific features (purity, colloidal stability, composition, size, shape, location…) are commonly requested by cutting-edge technologic applications, and hence a sustainable process for the mass-production of tunable/engineered nanomaterials would be desirable. Despite this, tuning nano-scale features when scaling-up the production of nanoparticles/nanomaterials has been considered the main technological barrier for the development of nanotechnology. Aimed at overcoming these challenging frontier, a new gas-phase reactor design providing a shorter residence time, and thus a faster quenching of nanoclusters growth, is proposed for the green, sustainable, versatile, cost-effective, and scalable manufacture of ultrapure engineered nanomaterials (ranging from nanoclusters and nanoalloys to engineered nanostructures) with a tunable degree of agglomeration, composition, size, shape, and location. This method enables: (1) more homogeneous, non-agglomerated ultrapure Au-Ag nanoalloys under 10 nm; (2) 3-nm non-agglomerated ultrapure Au nanoclusters with lower gas flow rates; (3) shape-controlled Ag NPs; and (4) stable Au and Ag engineered nanostructures: nanodisks, nanocrosses, and 3D nanopillars. In conclusion, this new approach paves the way for the green and sustainable mass-production of ultrapure engineered nanomaterials.
前沿技术应用通常需要具有非常特定特性(纯度、胶体稳定性、组成、尺寸、形状、位置等)的纳米材料,因此,大规模生产可调控/工程化纳米材料的可持续工艺将是理想的。尽管如此,在扩大纳米颗粒/纳米材料生产规模时调整纳米级特性一直被认为是纳米技术发展的主要技术障碍。为了克服这些具有挑战性的前沿问题,本文提出了一种新的气相反应器设计,该设计具有更短的停留时间,从而能够更快地淬灭纳米团簇的生长,用于绿色、可持续、通用、经济高效且可扩展地制造具有可调控团聚程度、组成、尺寸、形状和位置的超纯工程纳米材料(从纳米团簇和纳米合金到工程纳米结构)。该方法能够:(1)制备出更均匀、无团聚的10纳米以下超纯金-银纳米合金;(2)在较低气体流速下制备出3纳米无团聚超纯金纳米团簇;(3)制备出形状可控的银纳米颗粒;(4)制备出稳定的金和银工程纳米结构:纳米盘、纳米十字和三维纳米柱。总之,这种新方法为绿色、可持续地大规模生产超纯工程纳米材料铺平了道路。