Suppr超能文献

利用存档样本的遗传距离预测 中的抗生素耐药性。

Using Genetic Distance from Archived Samples for the Prediction of Antibiotic Resistance in .

机构信息

Division of Infectious Diseases, University of Toronto, Toronto, Canada

Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA.

出版信息

Antimicrob Agents Chemother. 2020 Apr 21;64(5). doi: 10.1128/AAC.02417-19.

Abstract

The rising rates of antibiotic resistance increasingly compromise empirical treatment. Knowing the antibiotic susceptibility of a pathogen's close genetic relative(s) may improve empirical antibiotic selection. Using genomic and phenotypic data for isolates from three separate clinically derived databases, we evaluated multiple genomic methods and statistical models for predicting antibiotic susceptibility, focusing on potentially rapidly available information, such as lineage or genetic distance from archived isolates. We applied these methods to derive and validate the prediction of antibiotic susceptibility to common antibiotics. We evaluated 968 separate episodes of suspected and confirmed infection with from three geographically and temporally separated databases in Ontario, Canada, from 2010 to 2018. Across all approaches, model performance (area under the curve [AUC]) ranges for predicting antibiotic susceptibility were the greatest for ciprofloxacin (AUC, 0.76 to 0.97) and the lowest for trimethoprim-sulfamethoxazole (AUC, 0.51 to 0.80). When a model predicted that an isolate was susceptible, the resulting (posttest) probabilities of susceptibility were sufficient to warrant empirical therapy for most antibiotics (mean, 92%). An approach combining multiple models could permit the use of narrower-spectrum oral agents in 2 out of every 3 patients while maintaining high treatment adequacy (∼90%). Methods based on genetic relatedness to archived samples of could be used to predict antibiotic resistance and improve antibiotic selection.

摘要

抗生素耐药率的上升日益威胁着经验性治疗。了解病原体近亲的抗生素敏感性可能有助于改善经验性抗生素选择。我们使用来自三个独立临床衍生数据库的分离株的基因组和表型数据,评估了多种用于预测抗生素敏感性的基因组方法和统计模型,重点关注潜在的快速可用信息,例如谱系或与存档分离株的遗传距离。我们应用这些方法来推导和验证常见抗生素的抗生素敏感性预测。我们评估了来自加拿大安大略省三个地理位置和时间上分离的数据库的 2010 年至 2018 年期间 968 例疑似和确诊感染的病例。在所有方法中,预测抗生素敏感性的模型性能(曲线下面积 [AUC])范围最大的是环丙沙星(AUC 为 0.76 至 0.97),最小的是复方磺胺甲噁唑(AUC 为 0.51 至 0.80)。当模型预测分离株敏感时,随后(后测)的敏感性概率足以保证大多数抗生素的经验性治疗(平均 92%)。结合多种模型的方法可以使每 3 名患者中的 2 名能够使用更窄谱的口服药物,同时保持较高的治疗充足率(约 90%)。基于与存档样本的遗传相关性的方法可用于预测抗生素耐药性并改善抗生素选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验