Suppr超能文献

基于单核苷酸多态性基因型的人工神经网络在多发性硬化症风险预测中的应用。

Application of Artificial Neural Network for Prediction of Risk of Multiple Sclerosis Based on Single Nucleotide Polymorphism Genotypes.

机构信息

Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

J Mol Neurosci. 2020 Jul;70(7):1081-1087. doi: 10.1007/s12031-020-01514-x. Epub 2020 Mar 9.

Abstract

The artificial neural network (ANN) is a sort of machine learning method which has been used in determination of risk of human disorders. In the current investigation, we have created an ANN and trained it based on the genetic data of 401 multiple sclerosis (MS) patients and 390 healthy subjects. Single nucleotide polymorphisms (SNPs) within ANRIL (rs1333045, rs1333048, rs4977574 and rs10757278), EVI5 (rs6680578, rs10735781 and rs11810217), ACE (rs4359 and rs1799752), MALAT1 (rs619586 and rs3200401), GAS5 (rs2067079 and rs6790), H19 (rs2839698 and rs217727), NINJ2 (rs11833579 and rs3809263), GRM7 (rs6782011 and rs779867), VLA4 (rs1143676), CBLB (rs12487066) and VEGFA (rs3025039 and rs2071559) had been genotyped in all individuals. We used "Keras" package for generation and training the ANN model. The k-folds cross-validation strategy was applied to confirm model generalization and overfit prevention. The locally interpretable model-agnostic explanation (LIME) was applied to explain model predictions at the data sample level. The TT genotype of the GAS5 rs2067079 had the most protective effect against MS, while the DD genotype of the ACE rs1799752 was the most prominent risk genotype. The accuracy, sensitivity and specificity values of the model were 64.73%, 64.95% and 64.49% respectively. The ROC AUC value was 69.67%. The current study is a preliminary study to appraise the application of ANN for prediction of risk of MS based on genomic data.

摘要

人工神经网络(ANN)是一种机器学习方法,已被用于确定人类疾病的风险。在目前的研究中,我们基于 401 名多发性硬化症(MS)患者和 390 名健康受试者的遗传数据创建了一个 ANN 并对其进行了训练。单核苷酸多态性(SNP)位于 ANRIL(rs1333045、rs1333048、rs4977574 和 rs10757278)、EVI5(rs6680578、rs10735781 和 rs11810217)、ACE(rs4359 和 rs1799752)、MALAT1(rs619586 和 rs3200401)、GAS5(rs2067079 和 rs6790)、H19(rs2839698 和 rs217727)、NINJ2(rs11833579 和 rs3809263)、GRM7(rs6782011 和 rs779867)、VLA4(rs1143676)、CBLB(rs12487066)和 VEGFA(rs3025039 和 rs2071559)在所有个体中进行了基因分型。我们使用“Keras”包生成和训练 ANN 模型。应用 k 折交叉验证策略来确认模型的泛化能力和防止过拟合。应用局部可解释模型不可知解释(LIME)在数据样本级别解释模型预测。GAS5 rs2067079 的 TT 基因型对 MS 的保护作用最强,而 ACE rs1799752 的 DD 基因型是最突出的风险基因型。模型的准确率、灵敏度和特异性值分别为 64.73%、64.95%和 64.49%。ROC AUC 值为 69.67%。本研究是一项初步研究,旨在评估基于基因组数据应用 ANN 预测 MS 风险的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验