Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA.
Department of Biostatistics, University of Washington, Seattle, WA, USA.
Clin Trials. 2020 Aug;17(4):394-401. doi: 10.1177/1740774520910367. Epub 2020 Mar 10.
Clinical trials embedded in health systems can randomize large populations using automated data sources to determine trial eligibility and assess outcomes. The suicide prevention outreach trial used real-world data for trial design and randomized 18,868 individuals in four health systems using patient-reported thoughts of death or self-harm (Patient Health Questionnaire item 9). This took 3.5 years. We consider if using predictive analytics, that is, suicide risk estimates based on prediction models, could improve trial "efficiency." We used data on mental health outpatient visits between 1 January 2009 and 30 September 2017 in seven health systems (HealthPartners; Henry Ford Health System; and Colorado, Hawaii, Northwest, Southern California, and Washington Kaiser Permanente regions). We used a suicide risk prediction model developed in these same systems. We compared five trial designs with different eligibility criteria: a response of a 2 or 3 on Patient Health Questionnaire item 9, a response of a 3, suicide risk score above 90th, 95th, or 99th percentile. We compared the sample that met each criterion, 90-day suicide attempt rate following first eligible visit, and necessary sample sizes to detect a 15%, 25%, and 35% relative reduction in the suicide attempt rate, assuming 90% power, for each eligibility criterion. Our sample included 24,355,599 outpatient visits. Despite wide-spread use of Patient Health Questionnaire, 21,026,985 (86.3%) visits did not have a recorded Patient Health Questionnaire. Of the 2,928,927 individuals in our sample, 109,861 had a recorded Patient Health Questionnaire item 9 response of a 2 or 3 over the study years with a 1.40% 90-day suicide attempt rate and 50,047 had a response of a 3 (suicide attempt rate 1.98%). More patients met criteria requiring a certain risk score or higher: 331,273 had a 90th percentile risk score or higher (suicide attempt rate: 1.36%); 182,316 a 95th percentile or higher (suicide attempt rate 2.16%), and 78,655 a 99th percentile or higher (suicide attempt rate: 3.95%). Eligibility criterion of a Patient Health Questionnaire item 9 response of a 2 or 3 would require randomizing 44,081 individuals (40.2% of eligible population in our sample); eligibility criterion of a 3 would require 31,024 individuals (62.0% of eligible population). Eligibility criterion of a suicide risk score of 90th percentile or higher would require 45,675 individuals (13.8% of eligible population), 95th percentile 28,699 individuals (15.7% of eligible population), and 99th percentile 15,509 (19.7% of eligible population). A suicide risk prediction calculator could improve trial "efficiency"; identifying more individuals at increased suicide risk than relying on patient-report. It is an open scientific question if individuals identified using predictive analytics would respond differently to interventions than those identified by more traditional means.
临床实验可以嵌入到医疗系统中,通过自动化数据来源随机分配大量人群,以确定试验的资格并评估结果。自杀预防外展试验使用真实世界的数据进行试验设计,并使用患者报告的死亡或自残想法(患者健康问卷第 9 项)在四个医疗系统中对 18868 人进行随机分组。这需要 3.5 年的时间。我们考虑是否可以使用预测分析,即基于预测模型的自杀风险估计,来提高试验的“效率”。我们使用了七个医疗系统(HealthPartners;Henry Ford Health System;科罗拉多州、夏威夷州、西北太平洋、南加州和华盛顿州 Kaiser Permanente 地区)在 2009 年 1 月 1 日至 2017 年 9 月 30 日期间的心理健康门诊就诊数据。我们使用了在这些相同系统中开发的自杀风险预测模型。我们比较了五种不同资格标准的试验设计:患者健康问卷第 9 项的 2 或 3 分反应、3 分反应、自杀风险评分高于第 90、95 或 99 百分位。我们比较了符合每个标准的样本、首次合格就诊后 90 天的自杀企图率,以及为检测自杀企图率降低 15%、25%和 35%所需的样本量,假设每个资格标准的效力为 90%。我们的样本包括 24355599 次门诊就诊。尽管广泛使用了患者健康问卷,但仍有 21026985 次就诊(86.3%)没有记录患者健康问卷。在我们的样本中,有 2928927 人,其中 109861 人在研究期间有记录的患者健康问卷第 9 项的 2 或 3 分反应,90 天的自杀企图率为 1.40%,50047 人有 3 分反应(自杀企图率为 1.98%)。更多的患者符合需要特定风险评分或更高评分的标准:331273 人有第 90 百分位风险评分或更高(自杀企图率:1.36%);182316 人有第 95 百分位或更高(自杀企图率 2.16%),78655 人有第 99 百分位或更高(自杀企图率:3.95%)。患者健康问卷第 9 项的 2 或 3 分反应的资格标准将需要随机分配 44081 人(我们样本中符合条件的人群的 40.2%);3 分的资格标准将需要 31024 人(符合条件人群的 62.0%)。自杀风险评分达到第 90 百分位或更高的资格标准将需要 45675 人(符合条件人群的 13.8%),第 95 百分位需要 28699 人(符合条件人群的 15.7%),第 99 百分位需要 15509 人(符合条件人群的 19.7%)。自杀风险预测计算器可以提高试验的“效率”;与依赖患者报告相比,可以识别出更多处于自杀风险增加的人群。使用预测分析识别出的个体是否会对干预措施做出不同的反应,而不是使用更传统的方法来识别,这是一个开放的科学问题。