Suppr超能文献

快速生长细胞的机械屏蔽缓冲了生长异质性,并有助于器官形状的重现性。

Mechanical Shielding of Rapidly Growing Cells Buffers Growth Heterogeneity and Contributes to Organ Shape Reproducibility.

机构信息

Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.

Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo 001-0020, Japan; Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden.

出版信息

Curr Biol. 2017 Nov 20;27(22):3468-3479.e4. doi: 10.1016/j.cub.2017.10.033. Epub 2017 Nov 9.

Abstract

A landmark of developmental biology is the production of reproducible shapes, through stereotyped morphogenetic events. At the cell level, growth is often highly heterogeneous, allowing shape diversity to arise. Yet, how can reproducible shapes emerge from such growth heterogeneity? Is growth heterogeneity filtered out? Here, we focus on rapidly growing trichome cells in the Arabidopsis sepal, a reproducible floral organ. We show via computational modeling that rapidly growing cells may distort organ shape. However, the cortical microtubule alignment along growth-derived maximal tensile stress in adjacent cells would mechanically isolate rapidly growing cells and limit their impact on organ shape. In vivo, we observed such microtubule response to stress and consistently found no significant effect of trichome number on sepal shape in wild-type and lines with trichome number defects. Conversely, modulating the microtubule response to stress in katanin and spiral2 mutant made sepal shape dependent on trichome number, suggesting that, while mechanical signals are propagated around rapidly growing cells, the resistance to stress in adjacent cells mechanically isolates rapidly growing cells, thus contributing to organ shape reproducibility.

摘要

发育生物学的一个里程碑是通过定型的形态发生事件产生可重复的形状。在细胞水平上,生长通常是高度异质的,从而允许形状多样性的出现。然而,可重复的形状如何从这种生长异质性中产生呢?生长异质性是否被过滤掉了?在这里,我们专注于拟南芥萼片中快速生长的毛状体细胞,这是一种可重复的花器官。我们通过计算建模表明,快速生长的细胞可能会扭曲器官的形状。然而,沿着相邻细胞中生长衍生的最大拉伸应力排列的皮层微管会在机械上隔离快速生长的细胞,并限制它们对器官形状的影响。在体内,我们观察到这种微管对压力的反应,并且一致地发现,野生型和毛状体数量缺陷的品系中,毛状体数量对萼片形状没有显著影响。相反,调节katanin 和螺旋 2 突变体对压力的微管反应使得萼片形状依赖于毛状体数量,这表明,虽然机械信号在快速生长的细胞周围传播,但相邻细胞对压力的抵抗在机械上隔离了快速生长的细胞,从而有助于器官形状的可重复性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验