Takahashi Kazuki, Morimoto Ryousuke, Tabeta Hiromitsu, Asaoka Mariko, Ishida Masanori, Maeshima Masayoshi, Tsukaya Hirokazu, Ferjani Ali
Department of Biology, Tokyo Gakugei University, Koganei-shi, Japan.
Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
Plant Cell Physiol. 2017 Apr 1;58(4):668-678. doi: 10.1093/pcp/pcx021.
To reveal the logic of size regulation in multicellular organisms, we have used Arabidopsis thaliana as a model organism and its leaves as a model organ. We discovered the existence of a compensatory system, whereby a decrease in leaf cell number often triggers unusual cell enlargement. However, despite the large number of compensation-exhibiting mutants analyzed to date, we have only a limited understanding of the detailed molecular mechanisms triggering the decrease in cell number and subsequent compensated cell enlargement (CCE). CCE in fugu5, the vacuolar type H+-pyrophosphatase loss-of-function mutant, is specific to cotyledons and completely suppressed when sucrose (Suc) is supplied or cytosolic pyrophosphate (PPi) is specifically removed. In addition, several lines of evidence suggest that excess cytosolic PPi in fugu5 impairs gluconeogenesis from triacylglycerol (TAG) to Suc. Here, detailed cellular phenotyping revealed that the loss-of-function mutants icl-2, mls-2 and pck1-2 triggered CCE in cotyledons. All double mutant combinations between fugu5-1 and the above three mutants exhibited compensation, but did not display a further increase in cell size. Importantly, similar phenotypes were observed in icl-2 mls-2, icl-2 pck1-2 and mls-2 pck1-2. Quantification of TAG breakdown and Suc contents further supported our findings. Taken together, we demonstrate that de novo Suc synthesis from TAG is fundamentally important for proper resumption of post-germinative cotyledon development. Moreover, provided that icl-2, mls-2 and pck1-2 are only compromised in Suc biosynthesis de novo from TAG, our findings clearly indicate that lowered Suc production in fugu5, rather than excess cytosolic PPi, is the direct trigger of CCE.
为了揭示多细胞生物中大小调控的逻辑,我们使用拟南芥作为模式生物,以其叶片作为模式器官。我们发现了一种补偿系统的存在,即叶片细胞数量的减少通常会引发异常的细胞增大。然而,尽管迄今为止分析了大量表现出补偿作用的突变体,但我们对触发细胞数量减少以及随后的补偿性细胞增大(CCE)的详细分子机制仍了解有限。液泡型H⁺-焦磷酸酶功能缺失突变体fugu5中的CCE仅发生在子叶中,当供应蔗糖(Suc)或特异性去除胞质焦磷酸(PPi)时,CCE会完全受到抑制。此外,多条证据表明,fugu5中过量的胞质PPi会损害从三酰甘油(TAG)到Suc的糖异生作用。在这里,详细的细胞表型分析表明,功能缺失突变体icl-2、mls-2和pck1-2会在子叶中触发CCE。fugu5-1与上述三个突变体之间的所有双突变组合都表现出补偿作用,但细胞大小没有进一步增加。重要的是,在icl-2 mls-2、icl-2 pck1-2和mls-2 pck1-2中也观察到了类似的表型。对TAG分解和Suc含量的定量分析进一步支持了我们的发现。综上所述,我们证明从TAG重新合成Suc对于萌发后子叶发育的正常恢复至关重要。此外,鉴于icl-2、mls-2和pck1-2仅在从TAG从头合成Suc的过程中受损,我们的发现清楚地表明,fugu5中Suc产量降低而非过量的胞质PPi是CCE的直接触发因素。