Suppr超能文献

定义、计算和收敛动力学转变网络的观测值。

Defining, Calculating, and Converging Observables of a Kinetic Transition Network.

机构信息

Aix-Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy, 13288 Marseille, France.

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.

出版信息

J Chem Theory Comput. 2020 Apr 14;16(4):2661-2679. doi: 10.1021/acs.jctc.9b01211. Epub 2020 Mar 19.

Abstract

Kinetic transition networks (KTNs) of local minima and transition states are able to capture the dynamics of numerous systems in chemistry, biology, and materials science. However, extracting observables is numerically challenging for large networks and generally will be sensitive to additional computational discovery. To have any measure of convergence for observables, these sensitivities must be regularly calculated. We present a matrix formulation of the discrete path sampling framework for KTNs, deriving expressions for branching probabilities, transition rates, and waiting times. Using the concept of the quasi-stationary distribution, a clear hierarchy of expressions for network observables is established, from exact results to steady-state approximations. We use these results in combination with the graph transformation method to derive the sensitivity, with respect to perturbations of the known KTN, giving explicit terms for the pairwise sensitivity and discussing the pathwise sensitivity. These results provide guidelines for converging the network, with respect to additional sampling, focusing on the estimates obtained for the overall rate coefficients between product and reactant states. We demonstrate this procedure for transitions in the double-funnel landscape of the 38-atom Lennard-Jones cluster.

摘要

动力学过渡网络 (KTN) 的局部极小值和过渡态能够捕捉化学、生物学和材料科学中众多系统的动态。然而,对于大型网络来说,提取可观测值在数值上具有挑战性,并且通常对额外的计算发现很敏感。为了使可观测值具有任何收敛的度量,必须定期计算这些敏感性。我们提出了 KTN 的离散路径采样框架的矩阵形式,推导出分支概率、跃迁率和等待时间的表达式。利用准静态分布的概念,为网络可观测值建立了一个清晰的层次结构,从精确结果到稳态逼近。我们将这些结果与图变换方法结合起来,推导出对已知 KTN 的扰动的敏感性,给出了两两敏感性的显式项,并讨论了路径敏感性。这些结果为针对附加采样使网络收敛提供了指导,重点是获得产物和反应物状态之间的整体速率系数的估计值。我们在 38 原子 Lennard-Jones 团簇的双漏斗景观中的跃迁中演示了这个过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验