Suppr超能文献

老年癌症患者 6 个月死亡率预测模型的开发、验证和临床影响:GRADE 研究。

Development, validation and clinical impact of a prediction model for 6-month mortality in older cancer patients: the GRADE.

机构信息

APHP, Avicenne Hospital, Department of Medical Oncology, Bobigny F-93000, France.

INSERM, U942, Paris F-75010, France.

出版信息

Aging (Albany NY). 2020 Mar 10;12(5):4230-4246. doi: 10.18632/aging.102876.

Abstract

BACKGROUND

To develop, validate, and assess the clinical impact of a clinical score to predict a 6-month mortality risk among older cancer patients.

RESULTS

The mean age was 81.2 ± 6.1 years (women: 54%, various cancers, metastatic cancer: 45%). The score, namely the GRADE, included two geriatric variables (unintentional weight loss, impaired mobility), two oncological variables (cancer site, cancer extension), and exclusively supportive care. Up to a 14% risk of early death, the decision curves suggest that cancer treatment should be instated.

CONCLUSION

We have developed and validated a simple score, easy to implement in daily oncological practice, to predict early death among older cancer patients which could guide oncologists in their treatment decisions.

METHODS

603 outpatients prospectively included in the Physical Frailty in Elderly Cancer patients cohort study. We created a multivariate prediction model by evaluating the strength of the individual components of the Geriatric Assessment regarding risk of death at 6 months. Each component was evaluated by univariate analysis and the significant variables ( ≤ 0.20) were carried on as covariates in the multivariate cox proportion hazard analysis. The beta coefficients from the model were used to build a point-based scoring system. Clinical impact was assessed using decision curves.

摘要

背景

开发、验证和评估一种临床评分,以预测老年癌症患者 6 个月的死亡风险。

结果

患者平均年龄为 81.2 ± 6.1 岁(女性:54%,各种癌症,转移性癌症:45%)。该评分即 GRADE 评分,包括两个老年变量(非故意体重减轻、活动能力受损)、两个肿瘤学变量(癌症部位、癌症扩散)和专门的支持性护理。在死亡风险高达 14%的情况下,决策曲线表明应开始癌症治疗。

结论

我们已经开发并验证了一种简单的评分,易于在日常肿瘤学实践中实施,以预测老年癌症患者的早期死亡,从而指导肿瘤学家做出治疗决策。

方法

前瞻性纳入 603 名老年癌症患者身体虚弱队列研究的门诊患者。我们通过评估老年综合评估的各个组成部分对 6 个月内死亡风险的强度,创建了一个多变量预测模型。通过单变量分析评估每个组成部分,将显著变量(≤0.20)作为多变量 Cox 比例风险分析的协变量。模型中的β系数用于构建基于点的评分系统。使用决策曲线评估临床影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edcb/7093177/6bbaca6e9e77/aging-12-102876-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验