Suppr超能文献

微小 RNA-mRNA 网络定义骨肉瘤中可翻译的分子结局表型。

MicroRNA-mRNA networks define translatable molecular outcome phenotypes in osteosarcoma.

机构信息

Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.

Illumina, Inc., San Diego, United States.

出版信息

Sci Rep. 2020 Mar 10;10(1):4409. doi: 10.1038/s41598-020-61236-3.

Abstract

There is a lack of well validated prognostic biomarkers in osteosarcoma, a rare, recalcitrant disease for which treatment standards have not changed in over 20 years. We performed microRNA sequencing in 74 frozen osteosarcoma biopsy samples, constituting the largest single center translationally analyzed osteosarcoma cohort to date, and we separately analyzed a multi-omic dataset from a large NCI supported national cooperative group cohort. We validated the prognostic value of candidate microRNA signatures and contextualized them in relevant transcriptomic and epigenomic networks. Our results reveal the existence of molecularly defined phenotypes associated with outcome independent of clinicopathologic features. Through machine learning based integrative pharmacogenomic analysis, the microRNA biomarkers identify novel therapeutics for stratified application in osteosarcoma. The previously unrecognized osteosarcoma subtypes with distinct clinical courses and response to therapy could be translatable for discerning patients appropriate for more intensified, less intensified, or alternate therapeutic regimens.

摘要

在骨肉瘤中缺乏经过充分验证的预后生物标志物,这种罕见且难治的疾病的治疗标准 20 多年来没有改变。我们对 74 个冷冻骨肉瘤活检样本进行了 microRNA 测序,构成了迄今为止最大的单一中心转化分析骨肉瘤队列,并且我们分别分析了来自大型 NCI 支持的国家合作组队列的多组学数据集。我们验证了候选 microRNA 特征的预后价值,并将其置于相关的转录组和表观基因组网络中。我们的研究结果揭示了与临床病理特征无关的与结局相关的分子定义表型的存在。通过基于机器学习的综合药物基因组学分析,microRNA 生物标志物为骨肉瘤的分层应用确定了新的治疗方法。以前未被认识到的具有不同临床过程和对治疗反应的骨肉瘤亚型可能可用于区分适合更强化、较少强化或替代治疗方案的患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验