Sharma Arun, Satish Deepshikha, Sharma Sushmita, Gupta Dinesh
Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
Front Plant Sci. 2020 Feb 25;10:1791. doi: 10.3389/fpls.2019.01791. eCollection 2019.
The purity of seeds is the most important factor in agriculture that determines crop yield, price, and quality. Rice is a major staple food consumed in different forms globally. The identification of high yielding and good quality paddy seeds is a challenging job and mainly dependent on expensive molecular techniques. The practical and day-to-day usage of the molecular-laboratory based techniques are very costly and time-consuming, and involves several logistical issues too. Moreover, such techniques are not easily accessible to paddy farmers. Thus, there is an unmet need to develop alternative, easily accessible and rapid methods for correct identification of paddy seed varieties, especially of commercial importance. We have developed iRSVPred, deep learning based on seed images, for the identification and differentiation of ten major varieties of basmati rice namely, Pusa basmati 1121 (1121), Pusa basmati 1509 (1509), Pusa basmati 1637 (1637), salt-tolerant basmati rice variety CSR 30 (CSR-30), Dehradoon basmati Type-3 (DHBT-3), Pusa Basmati-1 (PB-1), Pusa Basmati-6 (PB-6), Basmati -370 (BAS-370), Pusa Basmati 1718 (1718) and Pusa Basmati 1728 (1728). The method has an overall accuracy of 100% and 97% on the training set (total 61,632 images) and internal validation set (total 15,408 images), respectively. Furthermore, accuracies of greater than or equal to 80% have been achieved for all the ten varieties on the external validation dataset (642 images) used in the study. The iRSVPred web-server is freely available at http://14.139.62.220/rice/.
种子纯度是农业中决定作物产量、价格和品质的最重要因素。水稻是全球以不同形式消费的主要主食。高产优质水稻种子的鉴定是一项具有挑战性的工作,主要依赖于昂贵的分子技术。基于分子实验室的技术在实际日常使用中成本高昂且耗时,还涉及诸多后勤问题。此外,稻农不易获得此类技术。因此,迫切需要开发替代的、易于获取且快速的方法来正确鉴定水稻种子品种,尤其是具有商业重要性的品种。我们开发了基于种子图像的深度学习方法iRSVPred,用于鉴定和区分十种主要的巴斯马蒂水稻品种,即普萨巴斯马蒂1121(1121)、普萨巴斯马蒂1509(1509)、普萨巴斯马蒂1637(1637)、耐盐巴斯马蒂水稻品种CSR 30(CSR - 30)、德拉敦巴斯马蒂3型(DHBT - 3)、普萨巴斯马蒂 - 1(PB - 1)、普萨巴斯马蒂 - 6(PB - 6)、巴斯马蒂 - 370(BAS - 370)、普萨巴斯马蒂1718(1718)和普萨巴斯马蒂1728(1728)。该方法在训练集(共61,632张图像)和内部验证集(共15,408张图像)上的总体准确率分别为100%和97%。此外,在该研究使用的外部验证数据集(642张图像)上,所有十个品种的准确率均达到或超过80%。iRSVPred网络服务器可在http://14.139.62.220/rice/免费获取。