Suppr超能文献

基于深度空间与通道残差网络结合双注意力机制的多类别水稻种子识别

Multi-class rice seed recognition based on deep space and channel residual network combined with double attention mechanism.

作者信息

Zhang Tingyuan, Zhang Changsheng, Yang Zhongyi, Wang Meng, Zhang Fujie, Li Dekai, Yang Sen

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China.

Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China.

出版信息

PLoS One. 2025 May 16;20(5):e0322699. doi: 10.1371/journal.pone.0322699. eCollection 2025.

Abstract

Accurately recognizing rice seed varieties poses significant challenges due to their diverse morphological characteristics and complex classification requirements. Traditional image recognition methods often struggle with both accuracy and efficiency in this context. To address these limitations, this study proposes the Deep Space and Channel Residual Network with Double Attention Mechanism (RSCD-Net) to enhance the recognition accuracy of 36 rice seed varieties. The core innovation of RSCD-Net is the introduction of the Space and Channel Feature Extraction Residual Block (SCR-Block), which improves inter-class differentiation while minimizing redundant features, thereby optimizing computational efficiency. The RSCD-Net architecture consists of 16 layers of SCR-Blocks, structured into four convolutional stages with 3, 4, 6, and 3 units, respectively. Additionally, a Double Attention Mechanism (A2Net) is incorporated to enhance the network's global receptive field, improving its capacity to distinguish subtle variations among seed types. Experimental results on a self-collected dataset demonstrate that RSCD-Net achieves an average accuracy of 81.94%, surpassing the baseline model by 4.16%. Compared with state-of-the-art models such as InceptionResNetV2, ConvNeXt, MobileNetV3, and Swin Transformer, RSCD Net has improved by 1.17%, 3%, 24.72%, and 13.22%, respectively, showcasing its superior performance. These findings confirm that RSCD-Net provides an effective and efficient solution for rice seed classification, offering a promising reference for addressing similar fine-grained recognition challenges in agricultural applications.

摘要

由于水稻种子品种具有多样的形态特征和复杂的分类要求,准确识别它们面临着重大挑战。在这种情况下,传统的图像识别方法在准确性和效率方面往往都存在困难。为了解决这些局限性,本研究提出了具有双注意力机制的深度空间和通道残差网络(RSCD-Net),以提高对36个水稻种子品种的识别准确率。RSCD-Net的核心创新在于引入了空间和通道特征提取残差块(SCR-Block),它在最小化冗余特征的同时提高了类间区分度,从而优化了计算效率。RSCD-Net架构由16层SCR-Block组成,分为四个卷积阶段,分别有3、4、6和3个单元。此外,还引入了双注意力机制(A2Net)来增强网络的全局感受野,提高其区分种子类型细微差异的能力。在自行收集的数据集上的实验结果表明,RSCD-Net的平均准确率达到81.94%,比基线模型高出4.16%。与InceptionResNetV2、ConvNeXt、MobileNetV3和Swin Transformer等先进模型相比,RSCD-Net分别提高了1.17%、3%、24.72%和13.22%,展现出其卓越的性能。这些发现证实,RSCD-Net为水稻种子分类提供了一种有效且高效的解决方案,为解决农业应用中类似的细粒度识别挑战提供了有前景的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2e4/12083804/6e7a6155b627/pone.0322699.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验