Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States of America.
Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
PLoS One. 2020 Mar 11;15(3):e0230114. doi: 10.1371/journal.pone.0230114. eCollection 2020.
Nowcasting of precipitation is a difficult spatiotemporal task because of the non-uniform characterization of meteorological structures over time. Recently, convolutional LSTM has been shown to be successful in solving various complex spatiotemporal based problems. In this research, we propose a novel precipitation nowcasting architecture 'Convcast' to predict various short-term precipitation events using satellite data. We train Convcast with ten consecutive NASA's IMERG precipitation data sets each at intervals of 30 minutes. We use the trained neural network model to predict the eleventh precipitation data of the corresponding ten precipitation sequence. Subsequently, the predicted precipitation data are used iteratively for precipitation nowcasting of up to 150 minutes lead time. Convcast achieves an overall accuracy of 0.93 with an RMSE of 0.805 mm/h for 30 minutes lead time, and an overall accuracy of 0.87 with an RMSE of 1.389 mm/h for 150 minutes lead time. Experiments on the test dataset demonstrate that Convcast consistently outperforms other state-of-the-art optical flow based nowcasting algorithms. Results from this research can be used for nowcasting of weather events from satellite data as well as for future on-board processing of precipitation data.
降水临近预报是一项具有挑战性的时空任务,因为气象结构随时间的非均匀特征。最近,卷积长短期记忆(LSTM)已被证明在解决各种复杂的时空问题方面非常成功。在这项研究中,我们提出了一种新的降水临近预报架构 'Convcast',该架构使用卫星数据预测各种短期降水事件。我们使用十个连续的 NASA 的 IMERG 降水数据集来训练 Convcast,每个数据集的间隔为 30 分钟。我们使用训练好的神经网络模型来预测相应的十个降水序列中的第十一个降水数据。随后,我们将预测的降水数据用于 150 分钟提前期的降水临近预报。Convcast 在 30 分钟提前期时的整体准确率为 0.93,均方根误差为 0.805mm/h,在 150 分钟提前期时的整体准确率为 0.87,均方根误差为 1.389mm/h。在测试数据集上的实验表明,Convcast 始终优于其他基于光流的最先进的临近预报算法。这项研究的结果可以用于从卫星数据进行天气事件的临近预报,以及未来的机载降水数据处理。