School of Computer, Nanjing University of Information Science and Technology, Nanjing 210044, China.
Jiangsu Open University, Nanjing 210036, China.
Sensors (Basel). 2023 Jun 21;23(13):5785. doi: 10.3390/s23135785.
Precipitation nowcasting refers to the use of specific meteorological elements to predict precipitation in the next 0-2 h. Existing methods use radar echo maps and the Z-R relationship to directly predict future rainfall rates through deep learning methods, which are not physically constrained, but suffer from severe loss of predicted image details. This paper proposes a new model framework to effectively solve this problem, namely LSTMAtU-Net. It is based on the U-Net architecture, equipped with a Convolutional LSTM (ConvLSTM) unit with the vertical flow direction and depthwise-separable convolution, and we propose a new component, the Efficient Channel and Space Attention (ECSA) module. The ConvLSTM unit with the vertical flow direction memorizes temporal changes by extracting features from different levels of the convolutional layers, while the ECSA module innovatively integrates different structural information of each layer of U-Net into the channelwise attention mechanism to learn channel and spatial information, thereby enhancing attention to the details of precipitation images. The experimental results showed that the performance of the model on the test dataset was better than other examined models and improved the accuracy of medium- and high-intensity precipitation nowcasting.
降水临近预报是指利用特定气象要素预测未来 0-2 小时内的降水。现有的方法使用雷达回波图和 Z-R 关系,通过深度学习方法直接预测未来的降雨率,这些方法不受物理约束,但严重损失了预测图像的细节。本文提出了一种新的模型框架来有效地解决这个问题,即 LSTMAtU-Net。它基于 U-Net 架构,配备了具有垂直流向和深度可分离卷积的卷积长短期记忆网络(ConvLSTM)单元,我们提出了一个新的组件,即高效通道和空间注意力(ECSA)模块。具有垂直流向的 ConvLSTM 单元通过从卷积层的不同级别提取特征来记忆时间变化,而 ECSA 模块则创新性地将 U-Net 各层的不同结构信息集成到通道注意力机制中,以学习通道和空间信息,从而增强对降水图像细节的关注。实验结果表明,该模型在测试数据集上的性能优于其他检查模型,提高了中高强度降水临近预报的准确性。