She Lei, Zhang Chenghong, Man Xin, Shao Jie
Sichuan Artificial Intelligence Research Institute, Yibin 644000, China.
Institute of Plateau Meteorology, China Meteorological Administration, Chengdu 610299, China.
Sensors (Basel). 2024 Sep 19;24(18):6049. doi: 10.3390/s24186049.
Precipitation nowcasting, which involves the short-term, high-resolution prediction of rainfall, plays a crucial role in various real-world applications. In recent years, researchers have increasingly utilized deep learning-based methods in precipitation nowcasting. The exponential growth of spatiotemporal observation data has heightened interest in recent advancements such as denoising diffusion models, which offer appealing prospects due to their inherent probabilistic nature that aligns well with the complexities of weather forecasting. Successful application of diffusion models in rainfall prediction tasks requires relevant conditions and effective utilization to direct the forecasting process of the diffusion model. In this paper, we propose a probabilistic spatiotemporal model for precipitation nowcasting, named LLMDiff. The architecture of LLMDiff includes two networks: a conditional encoder-decoder network and a denoising network. The conditional network provides conditional information to guide the denoising network for high-quality predictions related to real-world earth systems. Additionally, we utilize a frozen transformer block from pre-trained large language models (LLMs) in the denoising network as a universal visual encoder layer, which enables the accurate estimation of motion trend by considering long-term temporal context information and capturing temporal dependencies within the frame sequence. Our experimental results demonstrate that LLMDiff outperforms state-of-the-art models on the SEVIR dataset.
降水临近预报涉及到对降雨的短期、高分辨率预测,在各种实际应用中发挥着至关重要的作用。近年来,研究人员越来越多地在降水临近预报中使用基于深度学习的方法。时空观测数据的指数增长引发了人们对诸如去噪扩散模型等最新进展的兴趣,由于其固有的概率性质与天气预报的复杂性高度契合,这些模型具有诱人的前景。扩散模型在降雨预测任务中的成功应用需要相关条件以及有效利用来指导扩散模型的预测过程。在本文中,我们提出了一种用于降水临近预报的概率时空模型,名为LLMDiff。LLMDiff的架构包括两个网络:一个条件编码器-解码器网络和一个去噪网络。条件网络提供条件信息,以指导去噪网络进行与现实世界地球系统相关的高质量预测。此外,我们在去噪网络中使用来自预训练大语言模型(LLMs)的冻结变换器模块作为通用视觉编码器层, 这使得通过考虑长期时间上下文信息并捕捉帧序列内的时间依赖性来准确估计运动趋势成为可能。我们的实验结果表明,LLMDiff在SEVIR数据集上优于现有最先进的模型。