Suppr超能文献

利用基因传递纳米复合物进行原位骨组织工程。

In situ bone tissue engineering using gene delivery nanocomplexes.

机构信息

Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran.

Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599-3220, United States.

出版信息

Acta Biomater. 2020 May;108:326-336. doi: 10.1016/j.actbio.2020.03.008. Epub 2020 Mar 8.

Abstract

Gene delivery offers promising outcomes for functional recovery or regeneration of lost tissues at cellular and tissue levels. However, more efficient carriers are needed to safely and locally delivery of genetic materials. Herein, we demonstrate microfluidic-assisted synthesis of plasmid DNA (pDNA)-based nanocomplexe (NC) platforms for bone tissue regeneration. pDNA encoding human bone morphogenesis protein-2 (BMP-2) was used as a gene of interest. Formation and fine-tuning of nanocomplexes (NCs) between pDNA and chitosan (CS) as carriers were performed using a micromixer platform. Flow characteristics were adjusted to tune mixing time and consequently size, zeta potential, and compactness of assembled NCs. Subsequently, NCs were immobilized on a nanofibrous Poly(ε-caprolactone) (PCL) scaffold functionalized with metalloprotease-sensitive peptide (MMP-sensitive). This construct can provide an environmental-sensitive and localized gene delivery platform. Osteogenic differentiation of bone marrow-derived mesenchymal stem cells (MSCs) was studied using chemical and biological assays. The presented results converge to indicate a great potential of the developed methodology for in situ bone tissue engineering using immobilized microfluidic-synthesized gene delivery nanocomplexes, which is readily expandable in the field of regenerative nanomedicine. STATEMENT OF SIGNIFICANCE: In this study, we demonstrate microfluidic-assisted synthesis of plasmid DNA (pDNA)-based nanocomplexes (NCs) platforms for bone tissue regeneration. We used pDNA encoding human bone morphogenesis protein-2 (BMP-2) as the gene of interest. Using micromixer platform nanocomplexes (NCs) between pDNA and chitosan (CS) were fabricated and optimized. NCs were immobilized on a nanofibrous polycaprolactone scaffold functionalized with metalloprotease-sensitive peptide. In vitro and in vivo assays confirmed the osteogenic differentiation of mesenchymal stem cells (MSCs). The obtained data indicated great potential of the developed methodology for in situ bone tissue engineering using immobilized microfluidic-synthesized gene delivery nanocomplexes, which is readily expandable in the field of regenerative nanomedicine.

摘要

基因传递在细胞和组织水平上为丢失组织的功能恢复或再生提供了有希望的结果。然而,需要更有效的载体来安全且局部地递送遗传物质。在此,我们展示了基于质粒 DNA(pDNA)的纳米复合物(NC)平台的微流控辅助合成,用于骨组织再生。编码人骨形态发生蛋白-2(BMP-2)的 pDNA 被用作感兴趣的基因。pDNA 与壳聚糖(CS)作为载体之间的纳米复合物(NC)的形成和微调是使用微混合器平台进行的。通过调整流动特性来调节混合时间,从而调节组装 NC 的尺寸、Zeta 电位和紧凑度。随后,将 NC 固定在功能化有金属蛋白酶敏感肽(MMP 敏感)的纳米纤维聚己内酯(PCL)支架上。这种构建体可以提供环境敏感和局部基因传递平台。使用化学和生物学测定研究了骨髓间充质干细胞(MSCs)的成骨分化。呈现的结果表明,用于原位骨组织工程的开发方法具有很大的潜力,该方法使用固定化微流控合成的基因传递纳米复合物,在再生纳米医学领域具有很大的扩展性。

意义声明

在这项研究中,我们展示了微流控辅助合成用于骨组织再生的质粒 DNA(pDNA)基纳米复合物(NC)平台。我们使用编码人骨形态发生蛋白-2(BMP-2)的 pDNA 作为感兴趣的基因。使用微混合器平台制造和优化了 pDNA 与壳聚糖(CS)之间的纳米复合物(NC)。将 NC 固定在功能化有金属蛋白酶敏感肽的纳米纤维聚己内酯支架上。体外和体内实验证实了间充质干细胞(MSCs)的成骨分化。获得的数据表明,用于使用固定化微流控合成的基因传递纳米复合物进行原位骨组织工程的开发方法具有很大的潜力,该方法在再生纳米医学领域具有很大的扩展性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验