Suppr超能文献

使用监督支持向量机迁移学习实现基于心率的癫痫发作检测个性化

Personalizing Heart Rate-Based Seizure Detection Using Supervised SVM Transfer Learning.

作者信息

De Cooman Thomas, Vandecasteele Kaat, Varon Carolina, Hunyadi Borbála, Cleeren Evy, Van Paesschen Wim, Van Huffel Sabine

机构信息

Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium.

Department of Microelectronics, TU Delft, Delft, Netherlands.

出版信息

Front Neurol. 2020 Feb 26;11:145. doi: 10.3389/fneur.2020.00145. eCollection 2020.

Abstract

Automated seizure detection is a key aspect of wearable seizure warning systems. As a result, the quality of life of refractory epilepsy patients could be improved. Most state-of-the-art algorithms for heart rate-based seizure detection use a so-called patient-independent approach, which do not take into account patient-specific data during algorithm training. Although such systems are easy to use in practice, they lead to many false detections as the ictal heart rate changes are patient-dependent. In practice, only a limited amount of accurately annotated patient data is typically available, which makes it difficult to create fully patient-specific algorithms. In this context, this study proposes for the first time a new transfer learning approach that allows to personalize heart rate-based seizure detection by using only a couple of days of data per patient. The algorithm was evaluated on 2,172 h of single-lead ECG data from 24 temporal lobe epilepsy patients including 227 focal impaired awareness seizures. The proposed personalized approach resulted in an overall sensitivity of 71% with 1.9 false detections per hour. This is an average decrease in false detection rate of 37% compared to the reference patient-independent algorithm using only a limited amount of personal seizure data. The proposed transfer learning approach adapts faster and more robustly to patient-specific characteristics than other alternatives for personalization in the literature. The proposed method allows an easy implementable solution to personalize heart rate-based seizure detection, which can improve the quality of life of refractory epilepsy patients when used as part of a multimodal seizure detection system.

摘要

自动癫痫发作检测是可穿戴癫痫发作预警系统的关键环节。因此,难治性癫痫患者的生活质量有望得到改善。大多数基于心率的癫痫发作检测的先进算法采用所谓的独立于患者的方法,即在算法训练过程中不考虑患者的特定数据。虽然这类系统在实际应用中易于使用,但由于发作期心率变化因患者而异,会导致许多误报。在实际中,通常只有有限数量的准确标注的患者数据,这使得创建完全针对患者的算法变得困难。在此背景下,本研究首次提出一种新的迁移学习方法,该方法允许仅使用每位患者几天的数据来实现基于心率的癫痫发作检测个性化。该算法在来自24名颞叶癫痫患者的2172小时单导联心电图数据上进行了评估,其中包括227次局灶性意识障碍发作。所提出的个性化方法总体灵敏度为71%,每小时有1.9次误报。与仅使用有限数量个人癫痫发作数据的参考独立于患者的算法相比,误报率平均降低了37%。所提出的迁移学习方法比文献中其他个性化方法更快、更稳健地适应患者的特定特征。所提出的方法为基于心率的癫痫发作检测个性化提供了一种易于实现的解决方案,当作为多模态癫痫发作检测系统的一部分使用时,可以改善难治性癫痫患者的生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd10/7054223/4f7c4065f004/fneur-11-00145-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验